CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Si3.5Sb2Te3 Phase Change Material for Low-Power Phase Change Memory Application |
REN Kun1,2, RAO Feng1, SONG Zhi-Tang1, WU Liang-Cai1, ZHOU Xi-Lin1, XIA Meng-Jiao1, LIU Bo1, FENG Song-Lin1, XI Wei1, YAO Dong-Ning1, CHEN Bomy3 |
1State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Graduate School of the Chinese Academic of Sciences, Beijing 100049
3Silicon Storage Technology, Inc., 1171 Sonora Court, Sunnyvale, CA 94086, U.S.A.
|
|
Cite this article: |
REN Kun, RAO Feng, SONG Zhi-Tang et al 2010 Chin. Phys. Lett. 27 108101 |
|
|
Abstract Novel Si3.5Sb2Te3 phase change material for phase change memory is prepared by sputtering of Si and Sb2Te3 alloy targets. Crystalline Si3.5Sb2Te3 is a stable composite material consisting of amorphous Si and crystalline Sb2Te3, without separated Te phase. The thermally stable Si3.5Sb2Te3 material has data retention ability (10 years at 412 K) better than that of the Ge2Sb2Te5 material (10 years at 383 K). Phase change memory device based on Si3.5Sb2Te3 is successfully fabricated, showing low power consumption. Up to 2.2×107 cycles of endurance have been achieved with a resistance ratio lager than 300.
|
Keywords:
81.07.-b
85.30.De
61.66.Fn
81.05.-t
81.05.Zx
|
|
Received: 21 June 2010
Published: 26 September 2010
|
|
PACS: |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
61.66.Fn
|
(Inorganic compounds)
|
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
|
|
|
[1] Atwood G 2008 Science 321 210
[2] Lai S 2003 Int. Electron Device Meeting p 10.1.1
[3] Pellizzer F, Pirovano A, Ottogalli F, Magistretti M, Scaravaggi M, Zuliani P, Tosi M, Benvenuti A, Besana P, Cadeo S, Marangon T, Morrandi R, Piva R, Spandre A, Zonca R, Modelli A, Varesi E, Lowrey T, Lacaita A, Casagrande G, Cappelletti P and Bez R 2004 Symposium on VLSI Tech. Dig. Tech. Papers p 18
[4] Horii H, Yi J H, Park J H, Ha Y H, Baek I G, Park S O, Hwang Y N, Lee S H, Kim Y T, Lee K H, U-In Chung and Moon J T 2003 Symposium on VLSI Tech. Dig. Tech. Papers p 177
[5] Qiao B W, Feng J, Lai Y F, Ling Y, Lin Y Y, Tang T, Cai B C and Chen B 2006 Appl. Surf. Sci. 252 8404
[6] Lankhorst M H R, van Pieterson L, van Schijndel M, Jacobs B A J and Rijpers J C N 2003 Jap. J. Appl. Phys. 42 863
[7] van Pieterson L, Lankhorst M H R, van Schijndel M, Kuiper A E T and Roonsen J H J 2005 J. Appl. Phys. 97 083520
[8] Feng J, Zhang Z F, Zhang Y, Cai B C, Lin Y Y, Tang T A and Chen B 2007 J. Appl. Phys. 101 074502
[9] Zhang Y, Feng J, Zhang Z F, Cai B C, Lin Y Y, Tang T A and Chen B 2008 Appl. Surf. Sci. 254 5602
[10] Zhou X L, Wu L C, Song Z T, Rao F, Liu B, Yao D N, Lin W J, Li J T, Feng S L and Chen B M 2009 Appl. Phys. Expr. 2 091401
[11] Cheng Y, Han X D, Liu X Q, Zheng K, Zhang Z, Zhang T, Song Z T, Liu B and Feng S L 2008 Appl. Phys. Lett. 93 183113
[12] Lacaita A L 2006 Solid-State Electron. 50 24
[13] Ren K, Rao F, Song Z T, Wu L C, Zhou X L, Liu B, Feng S L, Xi W and Chen B 2010 Jpn. J. Appl. Phys. 49 080212 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|