Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 104704    DOI: 10.1088/0256-307X/27/10/104704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles
YUN Mei-Juan1,2, YUE Yin1, YU Bo-Ming3, LU Jian-Duo1,2, ZHENG Wei4
1Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081
2Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan 430081
3School of Physics, Huazhong University of Science and Technology, Wuhan 430074
4Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077
Cite this article:   
YUN Mei-Juan, YUE Yin, YU Bo-Ming et al  2010 Chin. Phys. Lett. 27 104704
Download: PDF(522KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a three-dimensional geometry model for tortuosity of streamlines in porous media with randomly placed cylindrical particles. The proposed model is expressed as functions of porosity and geometrical parameters with no empirical constant. This might be helpful for understanding the physical mechanism for tortuosity of streamlines in three-dimensional porous media. The model predictions are found to be in good agreement with the experimental data available.
Keywords: 47.55.Mh      47.15.-x      05.45.Df     
Received: 08 February 2010      Published: 26 September 2010
PACS:  47.55.Mh  
  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/104704       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/104704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUN Mei-Juan
YUE Yin
YU Bo-Ming
LU Jian-Duo
ZHENG Wei
[1] Xu Y S, Zhong Y J and Huang G X 2004 Chin. Phys. Lett. 21 1298
[2] Yu B M 2005 Chin. Phys. Lett. 22 158
[3] Wyllie M R J and Gregory A R 1955 Ind. Engin. Chem. Process Des. Dev. 47 1379
[4] Comiti J and Renaud M 1989 Chem. Engin. Sci. 44 1539
[5] Koponen A, Kataja M and Timonen J 1996 Phys. Rev. E 54 406
[6] Machac I and Cakl J 1991 PhD Dissertation (Pardubice: University of Chemical Technology)
[7] Moldrup P, Oleson T, Komatsu T, Schj{ø}nning P and Rolston D E 2001 Soil Sci. Am. J. 65 613
[8] Yu B M and Cheng P 2002 J. Heat Transfer 124 1117
[9] Liu Z F, Wang X H, Mao P and Wu Q S 2003 Chin. Phys. Lett. 20 1969
[10] Tian J P and Yao K L 2003 Chin. Phys. Lett. 20 253
[11] Zheng L C, Zhang X X and He J C 2003 Chin. Phys. Lett. 20 858
[12] Bear J 1972 Dynamics of Fluids in Porous Media (New York: Elsevier)
[13] Dullien F A L 1979 Porous Media, Fluid Transport and Pore Structure (San Diego: Academic)
[14] Armatas G S and Pomonis P J 2004 Chem. Eng. Sci. 59 5735
[15] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 1569
[16] Yun M J, Yu B M, Zhang B and Huang M T 2005 Chin. Phys. Lett. 22 1464
[17] Yun M J, Yu B M, Xu P and Wu J S 2006 Can. J. Chem. Engin. 84 301
[18] Yu B M, Li J H, Li Z H and Zou M Q 2003 Int. J. Multiphase Flow 29 1625
[19] Yun M J, Yu B M, Xu P and Cai J C 2008 Chin. Phys. Lett. 25 616
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 104704
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 104704
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 104704
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 104704
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 104704
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 104704
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 104704
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 104704
[9] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 104704
[10] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 104704
[11] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 104704
[12] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 104704
[13] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 104704
[14] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 104704
[15] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 104704
Viewed
Full text


Abstract