Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 100306    DOI: 10.1088/0256-307X/27/10/100306
GENERAL |
A New Model For the Double Well Potential
TIAN Gui-Hua, ZHONG Shu-Quan
School of Science, Beijing University of Posts and Telecommunications, Beijing 100875
Cite this article:   
TIAN Gui-Hua, ZHONG Shu-Quan 2010 Chin. Phys. Lett. 27 100306
Download: PDF(389KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new model for the double well potential is presented. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model has many merits and may be used in the double well problem.
Keywords: 03.65.Ge      71.70.Gm      73.40.Gk      11.30.Pb     
Received: 17 June 2010      Published: 26 September 2010
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  71.70.Gm (Exchange interactions)  
  73.40.Gk (Tunneling)  
  11.30.Pb (Supersymmetry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/100306       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/100306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Gui-Hua
ZHONG Shu-Quan
[1] Kumar P, Ruiz-Altaba M and Thoma B S 1986 Phys. Rev. Lett. 57 2749
[2] Theocharis G et al 2006 Phys. Rev. E 74 056608
[3] Grossmann F, Dittrich T, Jung P et al 1991 Phys. Rev. Lett. 67 516
[4] Della V G, Ornigotti M, Cianci E, Foglietti V, Laporta P and Longhi S 2007 Phys. Rev. Lett. 98 263601
[5] Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O and Arimondo E 2007 Phys. Rev. Lett. 99 220403
[6] Busch T et al 2003 J. Phys. B: At. Mol. Opt. 36 2553
[7] Tian G H and Zhong S Q 2009 arXiv:0906.4687 V3
[8] Tian G H and Zhong S Q 2009 arXiv:0906.4685 V3
[9] Tian G H 2005 Chin. Phys. Lett. 22 3013
[10] Tang W L and Tian G H 2010 Chin. Phys. B (accepted)
[11] Tian G H 2010 Chin. Phys. Lett. 27 030308
[12] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 040305
[13] Teukolsky S A 1973 J. Astrophys. 185 635
[14] Zhou J and Tian G 2010 J. Math. Phys. (submitted)
[15] Li K, Sun Y, Tian G H and Tang W L 2010 Chin. Sci. G (submitted)
[16] Tang W L 2010 MS thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 100306
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 100306
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100306
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 100306
[5] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 100306
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 100306
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100306
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 100306
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 100306
[10] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 100306
[11] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 100306
[12] LI Ju-Fen, KUANG Xiao-Yu, ** . Analysis of Ground-State Zero-Field Splitting for Mn2+ in ZnNbOF56(H2O) and CoNbOF56(H2O)[J]. Chin. Phys. Lett., 2011, 28(6): 100306
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 100306
[14] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 100306
[15] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 100306
Viewed
Full text


Abstract