Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 100304    DOI: 10.1088/0256-307X/27/10/100304
GENERAL |
Efficient Polarization Entanglement Purification Using Spatial Entanglement
GU Bin1,2, CHEN Yu-Lin1,2, ZHANG Cheng-Yi1,2, HUANG Yu-Gai3
1College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing 210044
2The Photonic Technology Lab, Nanjing University of Information Science and Technology, Nanjing 210044
3Jiangsu Institute of Education, Najing 210013
Cite this article:   
GU Bin, CHEN Yu-Lin, ZHANG Cheng-Yi et al  2010 Chin. Phys. Lett. 27 100304
Download: PDF(423KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The protocol using spatial entanglement to purify polarization entanglement by entanglement transformation between different degrees of freedom in a realistic environment is elaborated. Our analyses show that the bit-flip error can be completely purified, but the pure maximally entangled state can not be obtained ultimately if the spatial entanglement is impure. The fidelity of the purified state is decided by the spatial entanglement. Furthermore, this protocol can also be extended to purify the multi-particle Greenberg-Horne-Zeilinger (GHZ) state. It is presented that the spatial entanglement can be served as another source to improve the quality of entanglement.
Keywords: 03.67.Pp      03.67.Mn      03.67.Hk      42.50.-p     
Received: 08 June 2010      Published: 26 September 2010
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Hk (Quantum communication)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/100304       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/100304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GU Bin
CHEN Yu-Lin
ZHANG Cheng-Yi
HUANG Yu-Gai
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[9] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[10] Murao M, Plenio B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[11] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[12] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[13] Pan J W, Simon C and Zeilinger A 2001 Nature 410 1067
[14] Pan J W, Gasparonl S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[15] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[16] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[17] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[18] Sheng Y B, Deng F G and Zhou H Y 2008 Eur. Phys. J. D 48 279
[19] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[20] Bose S, Vedral V and Knight PL 1999 Phys. Rev. A 60 194
[21] Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
[22] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[24] Minář J, de Riedmatten H, Simon C, Zbinden H and Gisin N 2008 Phys. Rev. A 77 052325
[25] Bruss D 1998 Phys. Rev. Lett. 81 3018
[26] Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 100304
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 100304
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 100304
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 100304
[5] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 100304
[6] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 100304
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 100304
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 100304
[9] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 100304
[10] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 100304
[11] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 100304
[12] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 100304
[13] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 100304
[14] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 100304
[15] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 100304
Viewed
Full text


Abstract