Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 019601    DOI: 10.1088/0256-307X/27/1/019601
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Ion Velocity Distributions in a Non-Stationary Perpendicular Shock
YANG Zhong-Wei1,2, LU Quan-Ming1,2, WANG Shui1
1CAS Key Laboratory of Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 2300262State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
YANG Zhong-Wei, LU Quan-Ming, WANG Shui 2010 Chin. Phys. Lett. 27 019601
Download: PDF(1110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Previous particle-in-cell simulations have evidenced that supercritical, quasi-perpendicular shocks are non-stationary. By separating the incident ions into reflected (R) and directly transmitted (DT) parts, we investigate the ion distributions in a non-stationary perpendicular shock. The upstream ion distributions have two parts corresponding to the R and incident ions respectively, while the R ions have higher energy. The downstream ions have a core-ring distribution. The core and ring parts correspond to the DT and R ions, respectively. The ion distributions depend largely on the non-stationary shock structure. The percentage of the reflected ions cyclically varies in time with a period equal to the shock self-reformation cycle, and the number of the R ions increases with the steepness of the shock ramp.
Keywords: 96.50.Fm      94.05.Pt      96.50.Ry     
Received: 24 August 2009      Published: 30 December 2009
PACS:  96.50.Fm (Planetary bow shocks; interplanetary shocks)  
  94.05.Pt (Wave/wave, wave/particle interactions)  
  96.50.Ry (Discontinuities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/019601       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/019601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zhong-Wei
LU Quan-Ming
WANG Shui

[1] Lembge B et al 2004 Space Sci. Rev. 110 161
[2] Burgess D et al 2005 Space Sci. Rev. 118 205
[3] Biskamp D 1973 Nucl. Fusion 13 719
[4] Lembge B and Dawson J M 1987 Phys. Fluids 301767
[5] Fuselier S A et al 1994 J. Geophys. Res. 9911539
[6] Lipatov A S and Zank G P 1999 Phys. Rev. Lett. 82 3609
[7] Lu Q M, Wang D Y, and Wang S 2005 J. Geophys. Res. 110 A03223 doi: 10.1029/2004JA010739
[8] Lu Q M and Wang S 2006 J. Geophys. Res. 111A05204
[9] Burgess D, Wilkinson W P, and Schwartz S J 1989 J.Geophys. Res. 94 8783
[10] Gedalin M et al 2008 J. Geophys. Res. 113A05101
[11] Hada T, Oonishi M, Lembge B et al 2003 J. Geophys.Res. 108 1233 doi:10.1029/2002JA009339
[12] Scholer M and Matsukiyo S 2004 Ann. Geophys. 22 2345
[13] Lembge B and Savoini P 1992 Phys. Fluids B 43533
[14] Hellinger P et al 2002 Geophys. Res. Lett. 292234
[15] Lobzin V V et al 2007 Geophys. Res. Lett. 34L05107
[16] Krasnoselskikh et al 2002 Phys. Plasmas 91192
[17] Yang Z W et al 2009 J. Geophys. Res. 114A03111
[18] Shimada N and Hoshino M 2005 J. Geophys. Res. 110 A02105
Related articles from Frontiers Journals
[1] FU Hui-Shan, CAO Jin-Bin, YANG Biao, Lucek E, Rème H, Dandouras I. ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock[J]. Chin. Phys. Lett., 2009, 26(11): 019601
[2] ZHOU Yu-Fen, FENG Xue-Shang, Wu S. T.. Numerical Simulation of the 12 May 1997 CME Event[J]. Chin. Phys. Lett., 2008, 25(2): 019601
[3] GU Wei-Min, LU Ju-Fu. Standing Shocks in Viscous Accretion Flows around Black Holes[J]. Chin. Phys. Lett., 2005, 22(4): 019601
[4] ZHONG Ding-Kun, WEI Feng-Si, FENG Xue-Shang, YANG Fang,. New Evidence for Magnetic Reconnection in the Tail of Interplanetary Magnetic Cloud[J]. Chin. Phys. Lett., 2005, 22(12): 019601
[5] GU Wei-Min, LU Ju-Fu. Standing Rankine--Hugoniot Shocks in Black Hole Accretion Discs[J]. Chin. Phys. Lett., 2004, 21(12): 019601
[6] ZHANG Lin, CAI Ling-Cang, XIANG Shi-Kai, JING Fu-Qian, CHEN Dong-Quan. Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper[J]. Chin. Phys. Lett., 2003, 20(12): 019601
Viewed
Full text


Abstract