Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 014701    DOI: 10.1088/0256-307X/27/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability
TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze
Mine Disaster Prevention and Control Key Laboratory of Education Ministry, Shandong University of Science and Technology, Qingdao 266510
Cite this article:   
TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze 2010 Chin. Phys. Lett. 27 014701
Download: PDF(644KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified Lattice-Boltzmann method is proposed by considering the Klinkenberg effect and adsorbability-desorbability for the purpose of simulating methane gas seepage in fissured coal. The results show that the Klinkenberg effect has a little influence on methane gas seepage in fissured coal, so it can be neglected in engineering computations for simplicity. If both the Klinkenberg effect and the adsorbability-desorbability are considered, the Klinkenberg influence on gas pressure decreases as the Darcy coefficient increases. It is found by gas drainage simulations that near a drainage hole, the effect of adsorption and desorption cannot be neglected, and the location of the drainage hole has a great influence on drainage efficient λ when the hole is just located at the mid-zone of the coal seam, λ is 0.691808; when the hole is excursion down to 1.0m from the mid-zone of coal seam, λ decreases to 0.668631; when the hole is excursion up or down to 2.0m from the mid-zone of coal seam, λ decreases to 0.632917. The simulations supply an effective approach for optimizing the gas drainage hole location.
Keywords: 47.10.-g      05.20.Jj      05.10.-a     
Received: 17 August 2009      Published: 30 December 2009
PACS:  47.10.-g (General theory in fluid dynamics)  
  05.20.Jj (Statistical mechanics of classical fluids)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/014701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Yun-Liang
TENG Gui-Rong
ZHANG Ze

[1] Klusman R W 2006 USA Appl. Geochem. 21 1498
[2] Brown A 2000 AAPG Bull. 84 1775
[3] Zhang L H, Zhang J L and Xu B Q 2007 Chin. J. Comput.Phys. 24 90 (in Chinese)
[4] Vaziri H H et al 2002 J. Petroleum Sci. Engin. 36 71
[5] Xiao X C, Pan Y S 2007 Chin. J. Rock Mech. Engin. 26 977 (in Chinese)
[6] Chen H et al 1992 Phys. Rev. A 45 5339
[7] Qian Y H et al 1992 Europhys. Lett. 17 479
[8] Chen S et al 1998 Annu. Rev. Fluid Mech. 30329
[9] Inamuro T 2006 Fluid Dyn. Res. 38 641
[10] Basagaoglu H et al 2007 Physica A 374 691
[11] Jeong N, Lin C L and Hyung C D 2006 J. Micromech.Microengin. 16 1749
[12] Tang J P et al 2006 J. Chin. University MiningTechnol. 35 274
[13] Bhatnagar P et al 1954 Phys. Rev. 94 551
[14] Krajcinovic D 1984 Appl. Mech. Rev. 3 71
[15] Wong T F et al A 2006 Mech. Mater. 38 664
[16] Wu Y S et al 1998 Transport in Porous Media 32 117
[17] Chen D X 2002 Acta Mech. Sin. 34 96 (inChinese)
[18] Liu J J, Liu X G and Hu Y R 2003 Chin. J. RockMech. Engin. 22 556 (in Chinese)
[19] Seta T et al 2006 Math. Comput. Simul. 72 195
[20] Shan X and Chen H 1993 Phys. Rev. E 47 1815
[21] Huang H B et al 2009 Int. J. Numer. Meth. Fluids 61 341
[22] Ergun S 1952 Chem. Eng. Prog. 48 89
[23] Vafai K 1984 J. Fluid Mech. 147 233
[24] Klinkenberg L J 1941 American Petroleum Institutep 200
[25] Jones F O and Owens W W 1980 J. Pet. Tech. 32 1631
[26] Zhu W C et al 2007 Int. J. Rock Mech. Mining Sci. 44 971
[27] Ji Y P et al 2009 Chin. Phys. Lett. 26074702
[28] Cai J and Huai X L 2009 Chin. Phys. Lett. 26064401
[29] Wu J S et al 2009 Chin. Phys. Lett. 26064701
[30] Xia Y et al 2009 Chin. Phys. Lett. 26 034702
Related articles from Frontiers Journals
[1] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 014701
[2] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 014701
[3] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 014701
[4] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 014701
[5] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 014701
[6] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 014701
[7] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 014701
[8] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 014701
[9] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 014701
[10] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 014701
[11] ZHANG Ping, CAI Liang, LIAN Zeng-Ju, PAN Xiao-Yin. Density Profile of a Hard Disk Liquid System under Gravity[J]. Chin. Phys. Lett., 2010, 27(8): 014701
[12] S. Nadeem, Noreen Sher Akbar. Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis[J]. Chin. Phys. Lett., 2010, 27(6): 014701
[13] ZHU Jian-Zhou, Mark Taylor. Intermittency and Thermalization in Turbulence[J]. Chin. Phys. Lett., 2010, 27(5): 014701
[14] HU Jia-Wen, YU Yang-Xin. Prediction and Refinement of High-Order Virial Coefficients for a Hard-Sphere System[J]. Chin. Phys. Lett., 2009, 26(8): 014701
[15] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 014701
Viewed
Full text


Abstract