Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 014102    DOI: 10.1088/0256-307X/27/1/014102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae
HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen
Department of Telecomm unication, Jiangsu University, Zhenjiang 212013
Cite this article:   
HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen 2010 Chin. Phys. Lett. 27 014102
Download: PDF(357KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We concentrate on describing the important influence and physical law of the split resonant ring (SRR) based left-handed materials on patch antennae. The finite-difference time-domain method, together with the finite element method is used to study the characteristics of patch antennae based on composite rectangular SRRs. A novel composite rectangular SRR system is formed by assembling the conventional patch antennae and SRRs, it is found that electromagnetic wave resonance occurs near f=3.15GHz, the equivalent permittivity and permeability are both negative, and the electromagnetic wave's tunnel effect and evanescent waves' enhancing effect are formed, which can improve the localization extent of electromagnetic wave's energy apparently. Such effects can improve the antenna's radiation gain and its matching condition. The phenomenon indicates that such composite rectangular patch antennae are promising in wireless communications such as mobile phones, satellite communication and aviation.
Keywords: 41.20.Jb      41.20.-q      42.70.Qs      75.70.Cn     
Received: 09 October 2009      Published: 30 December 2009
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.-q (Applied classical electromagnetism)  
  42.70.Qs (Photonic bandgap materials)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/014102       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/014102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Ming
ZHOU Yue-Qun
SHEN Ting-Gen

[1] Vesolago V G 1968 Sov. Phys. Usp. 10 509
[2] Smith D R and Kroll N 2000 Phys. Rev. Lett. 852933
[3] Smith D R, Vier D C, Kroll N and Schultz 2000 Appl.Phys. Lett. 77 2246
[4] Ziolkowski R W 2003 IEEETrans. Anten. Propagat. 51 1516
[5] Yee K S 1966 IEEE Trans. Antenn. Propagat. 14302
[6] Shadrivov I V, Sukhorukov A A and Kivshar Y S 2004 Phys. Rev. E 69 016617
[7] Qiu M and He S L 2000 Phys. Rev. B 61 12871
[8] Dong X T, Rao X S, Gan Y B, Guo B and Yin W Y 2004 IEEE Microwave Wireless Compon. Lett. 14 301
[9] Jiang T, Cui W Z, Ma W and Yuan Y 2009 Chin. Phys.Lett. 26 104101
[10] Zhang Z M and Fu C J 2002 Appl. Phys. Lett. 80 l097
[11] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 014102
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 014102
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 014102
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 014102
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 014102
[6] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[7] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[8] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[9] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[10] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[11] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[12] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 014102
[13] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 014102
[14] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 014102
[15] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 014102
Viewed
Full text


Abstract