Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010306    DOI: 10.1088/0256-307X/27/1/010306
GENERAL |
Analytical Solutions to the Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Pöschl-Teller Potential
Altug Arda1, Ramazan Sever2, Cevdet Tezcan3
1Department of Physics Education, Hacettepe University, 06800, Ankara, Turkey2Department of Physics, Middle East Technical University, 06800, Ankara, Turkey3Faculty of Engineering, Baskent University, Baglica Campus, Ankara, Turkey
Cite this article:   
Altug Arda, Ramazan Sever, Cevdet Tezcan 2010 Chin. Phys. Lett. 27 010306
Download: PDF(300KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Pöschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
Keywords: 03.65.-w      03.65.Ge      12.39.Fd     
Received: 15 July 2009      Published: 30 December 2009
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  12.39.Fd  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010306       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Altug Arda
Ramazan Sever
Cevdet Tezcan

[1] Slater J C 1949 Phys. Rev. 76 15932
[2] Wannier G H 1937 Phys. Rev. 52 191
[3] Luttinger J M and Kohn W 1955 Phys. Rev. 97869
[4] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[5] Bastard G 1998 Wave Mechanics Applied toSemiconductor Hetrostructures (Les Ulis: Editors de Physique)
[6] Barranco M, Pi M, Gatica S M, Hernandez E S and Navarro J1997 Phys. Rev. B 56 8997
[7] de Saavedra F A, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[8] L\'{evy-Leblond J M 1995 Phys. Rev. A 52 1845
[9] Cavalcante F S A, Filho R N C, Filho H R, Almeida C A Sand Freire V N 1997 Phys. Rev. B 55 1326
[10] Dekar L, Chetouani L and Hamann T F 1998 J. Math.Phys. A 39 2551 Dekar L, Chetouani L and Hamann T F 1999 Phys. Rev. A 59 107
[11] Plastino A R, Rigo A, Casas M, Gracias F and Plastino A1999 Phys. Rev. A 60 4318
[12] Dutra A S and Almeida C A S 2000 Phys. Lett. A 275 25
[13] Roy B and Roy P 2002 J. Phys. A 35 3961
[14] Dong S H and Lozada-Cassou M 2005 Phys. Lett A 337 313
[15] Yu J and Dong S H 2004 Phys. Lett A 325 194
[16] Yu J, Dong S H and Sun G H 2004 Phys. Lett A 322 290
[17] Dutra A S, Hott M and Almeida C A S 2003 Europhys.Lett. 62 8
[18] Koc R, Koca M and Korcuk E 2002 J. Phys. A 35L527
[19] Koc R and Koca M 2003 J. Phys. A 36 8105
[20] Gonul B, Gonul B, Tutcu D and Ozer O 2002 Mod. Phys.Lett. A 17 2057
[21] Gonul B, Ozer O, Gonul B and Uzgun F 2002 Mod. Phys.Lett. A 17 2453
[22] Sever R and Tezcan C 2008 Int. J. Mod. Phys. E 17 1327
[arXiv:quant-ph/0712.0268]
[23] Tezcan C and Sever R 2008 Int. J. Theor. Phys. 47 1471
[24] Ikhdair S and Sever R arXiv:quant-ph/0604095
[25] Tezcan C and Sever R 2007 J. Math. Chem. 42387
[26] Alhaidari A D 2002 Phys. Rev. A 66 0421116
[27] Quesne C and Tkachuk V M 2004 J. Phys. A 374267
[28] Bagchi B, Banerjee A, Quesne C and Tkachuk V M 2005 J. Phys. A 38 2929
[29] Bagchi B, Quesne C and Roychoudhury R 2006 J. Phys.A 39 L127
[30] Mustafa O and Mazharimousavi S H 2006 J. Phys. A 39 10537
[31] Mustafa O and Mazharimousavi S H 2006 Czech. J.Phys. 56 967
[32] Bagchi B and Tanaka T 2008 Phys. Lett. A 3725390
[33] Mustafa O and Mazharimousavi S H 2008 Int. J. Theor.Phys. 47 1112
[34] Alhaidari A D 2004 Phys. Lett. A 322 12
[35] Jia C S, Wang P Q, Liu J Y and He S 2008 Int. J.Theor. Phys. 47 2513
[36] Jia C S and Dutra A S 2006 J. Phys. A 3911877
[37] Mustafa O and Mazharimousavi S H 2007 J. Phys. A 40 863
[38] Jia C S, Liu J Y, Wang P Q and Che C S 2007 Phys.Lett. A 369 274
[39] Jia C S and Dutra A S 2008 Ann. Phys. 323 566
[40] Mustafa O and Mazharimousavi S H 2008 Int. J. Theor.Phys. 47 446
[41] Jimbo M 1985 Lett. Math. Phys. 10 63 Jimbo M 1986 Lett. Math. Phys. 11 247
[42] Sviratcheva K D, Bahri C, Georgieva A I and Draayer J P2004 Phys. Rev. Lett. 93 152501
[43] Ballesteros A, Civitarese O, Herranz F J and Reboiro M2002 Phys. Rev. C 66 064317
[44] Ballesteros A, Civitarese O and Reboiro M 2003 Phys.Rev. C 68 044307
[45] Bonatsos D, Kotsos B A, Raychev P P and Terziev P A 2002 Phys. Rev. C 66 054306
[46] Ballesteros A, Bruno N R and Herranz F J 2003 Phys.Lett. B 574 276
[47] Bais F A, Schroers B J and Slingerland J K 2002 Phys. Rev. Lett. 89 181601
[48] Alg{\in A, Ar{\ik M and Ar{\ikan A S 2002 Phys.Rev. E 65 026140
[49] Zhang J 2000 Phys. Lett. B 477 361
[50] Arai A 1991 J. Math. Anal. Apply. 158 63
[51] Fl\"ugge S Practical 1971 Quantum Mechanics I(Berlin: Springer)
[52] Nikiforov A F and Uvarov V B 1988 Special Functionsof Mathematical Physics (Basel: Birkhauser)
[53] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[{arXiv:quant-ph/0807.2304]
[54] Abramowitz M and Stegun I 1972 Handbook ofMathematical Functions with Formulas, Graphs and MathematicalTables (New York: Dover)
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 010306
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 010306
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010306
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 010306
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 010306
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 010306
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 010306
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010306
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 010306
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 010306
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 010306
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 010306
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 010306
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 010306
Viewed
Full text


Abstract