Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 090501    DOI: 10.1088/0256-307X/26/9/090501
GENERAL |
Synchronization of Chaos in Time-Delayed Systems under Parameter Mismatch
ZHANG Yan, LU Shuang, WANG Ying-Hai
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
ZHANG Yan, LU Shuang, WANG Ying-Hai 2009 Chin. Phys. Lett. 26 090501
Download: PDF(433KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on synchronization between two identical time delay chaotic systems under parameter mismatch. It overcomes some limitations of the previous work where synchronization and antisynchronization has been investigated only in finite-dimensional chaotic systems under parameter mismatch, so we can achieve synchronization and antisynchronization in infinite-dimensional chaotic systems under parameter mismatch. For infinite-dimensional systems modelled by delay differential equations, we find stable synchronization and antisynchronization in long-, moderate- and short-time delay regions, in particular for the hyperchaotic case.
Keywords: 05.45.Xt      05.45.Jn      05.45.Pq     
Received: 20 May 2009      Published: 28 August 2009
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/090501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yan
LU Shuang
WANG Ying-Hai
[1] Zhao H et al 1998 Phys. Rev. E 58 4383
[2] Liu Y W et al 1999 Phys. Lett. A 256 166
[3] Qi W, Zhang Y and Wang Y H 2007 Chin. Phys. Soc. 16 2259
[4] Sun J T, Zhang Y and Wang Y H 2008 Chin. Phys. Lett. 25 2389
[5] Feng C F, Zhang Y and Wang Y H 2008 Chaos, Solitonsand Fractals 38 743
[6] Feng C F, Zhang Y and Wang Y H 2007 Chin. Phys.Lett. 24 50
[7] Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys.Lett. 23 1418
[8] Pyragas K 1998 Int. J. Bifur. Chaos Appl. Sci. Eng. 8 1839
[9] Argyris A et al 2005 Nature 438 343
[10] Mohanty P 2005 Nature 437 325
[11] Hoppensteadt F and Izhikevich E 2005 U.S. Patent No6957204
[12] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22543
[13] Venkatarmani S C, Hunt B and Ott E 1996 Phys. Rev.Lett. 77 5631 Astakhov V et al 1998 Phys. Rev. E 58 5620 Viana R L et al 2005 Physica D 206 94
[14] Pikovsky A, Rosenblum M and Kurths J Synchronization: A Universal Concept in Nonlinear Sciences 2001(Cambridge: Cambridge University)
[15] Belykh V, Belykh I and Hasler M 2000 Phys. Rev. E 62 6332
[16] Cao L Y and Lai Y C 1998 Phys. Rev. E 58 382
[17] Wedekind I and Parlitz U 2002 Phys. Rev. E 66026218
[18] Liu W Q et al 2006 Phys. Rev. E 73 057203
[19] Grosu I et al 2008 Phys. Rev. Lett. 100234102
[20] Jackson E A, and Grosu I 1995 Physica D 85 1 Grosu I 1997 Phys. Rev. E 56 3079 Grosu I 2007 Int. J. Bifur. Chaos Appl. Sci. Eng. 17 3519
[21] Li J N and Hao B L 1989 Commun. Theor. Phys. 11 265
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 090501
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090501
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090501
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 090501
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090501
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090501
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 090501
[8] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 090501
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 090501
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090501
[11] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 090501
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 090501
[13] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090501
[14] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090501
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 090501
Viewed
Full text


Abstract