CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Density Functional Calculation of the 0.5ML-Terminated Allyl Mercaptan/Si(100)-(2×1) Surface |
TANG Chun-Mei1,2, DENG Kai-Ming1,2, CHEN Xuan1,2, XIAO Chuan-Yun1,2, LIU Yu-Zhen1,2, LI Qun-Xiang2 |
1Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 2100942Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
TANG Chun-Mei, DENG Kai-Ming, CHEN Xuan et al 2009 Chin. Phys. Lett. 26 076801 |
|
|
Abstract The structural and electronic properties of the 0.5ML-terminated allyl mercaptan (ALM)/Si(100)-(2×1) surface are studied using the density functional method. The calculated absorption energy of the ALM molecule on the 0.5ML-terminated ALM/Si(100)-(2×1) surface is 3.36eV, implying that adsorption is strongly favorable. The electronic structure calculations show that the ALM/Si(100)-(2×1), the clean Si(100)-(2×1), and the fully-terminated H/Si(100)-(2×1) surfaces have the nature of an indirect band gap semiconductor. The highest occupied molecular orbital is dominated by the ALM, confirming the mechanism proposed by Hossain for its chain reaction.
|
Keywords:
68.43.Bc
71.20.-b
71.15.Mb
|
|
Received: 06 February 2009
Published: 02 July 2009
|
|
PACS: |
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] Masri P 2002 Surf. Sci. Rep. 48 1 [2] Bent S F 2002 J. Phys. Chem. B 106 2830 [3] Bent S F 2002 Surf. Sci. 500 879 [4] Basu R, Guisinger N P, Greene M E and Hersam M C 2004 Appl. Phys. Lett. 85 2619 [5] Wolkow R A 1999 Annu. Rev. Phys. Chem. 50 413 [6] Okawa Y and Aono M 2001 J. Chem. Phys. 1152317 [7] Kruse P, Johnson E R, DiLabio G A and Wolkow R A 2002 Nano. Lett. 2 807 [8] Hossain M Z, Kato H S and Kawai M 2005 J. Am. Chem.Soc. 127 15030 [9] Lopinski G P, Wayner D D M and Wolkow R A 2000 Nature 406 48 [10] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [11] Wang X C, Zhang J H, Wen Y H and Zhu Z Z 2009 Chin.Phys. Lett. 26 016802 [12] Bl\"{ochl P E 1994 Phys. Rev. B 50 17953 [13] Pei X Y, Yang X P and Dong J M 2006 Phys. Rev. B 73 195417 [14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [15] \^{Stich I, Car R, Parrinello M and Baroni S 1989 Phys. Rev. B 39 4997 [16] Nicolay G, Reinert F, H\"{ufner S and Blaha P 2001 Phys. Rev. B 65 033407 [17] Kr\'{cmar M and Fu C L 2003 Phys. Rev. B 68115404 [18] Errico L A, Fabricius G, Renter\'{la M, Presa P D L andForker M 2002 Phys. Rev. Lett. 89 055503 [19] Kresse G and Joubert D 1999 Phys. Rev. B 591758 [20] Kr\"{uger P and Pollmann J 1993 Phys. Rev. B 47 1898 [21] Ciston J, Marks L D, Feidenhans R, Bunk O, FalkenbergandG and Lauridsen E M 2006 Phy. Rev. B 74 085401 [22] Romero A H, Sbraccia C and Silvestrelli P L 2004 J.Chem. Phys. 120 9745 [23] Droogenbroeck J V, Tersago K, Alsenoy C V and Blockhuys F2004 Chem. Phys. Lett. 399 516 [24] Cakmak M and Srivastava G P 1999 Phys. Rev. B 60 5497 [25] Orita H and Naotsugu I 2004 Surf. Sci 550 177 [26] Preuss M, Schmidt W G and Bechstedt F 2004 J. Phys.Chem. B 108 7809 [27] Hortamani M, Wu H, Kratzer P and Scheffler M 2006 Phys. Rev. B 74 205305 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|