Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 068902    DOI: 10.1088/0256-307X/26/6/068902
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Modelling Moran Process with Network Dynamics for the Evolution of Cooperation
YANG Dong-Ping, LIN Hai, WU Chen-Xu, SHUAI Jian-Wei
Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005
Cite this article:   
YANG Dong-Ping, LIN Hai, WU Chen-Xu et al  2009 Chin. Phys. Lett. 26 068902
Download: PDF(274KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a simple model based on the Moran process with network dynamics. Using pair approximation, the cooperation frequencies at equilibrium states are deduced for general interactions. Three usual social dilemmas are discussed in the framework of our model. It is found that they all have a phase transition at the same value of cost-to-benefit ratio. For the prisoner's dilemma game, notably it is exactly the simple rule reported in the literature [Nature 441(2006)502]. In our model, the simple rule results from the parent-offspring link. Thus the basic mechanism for cooperation enhancement in network reciprocity is in line with the Hamilton rule of kin selection. Our simulations verify the analysis obtained from pair approximation.
Keywords: 89.75.Fb      02.50.Le      87.23.-s      87.23.Ge     
Received: 09 January 2009      Published: 01 June 2009
PACS:  89.75.Fb (Structures and organization in complex systems)  
  02.50.Le (Decision theory and game theory)  
  87.23.-s  
  87.23.Ge (Dynamics of social systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/068902       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/068902
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Dong-Ping
LIN Hai
WU Chen-Xu
SHUAI Jian-Wei
[1] Taylor C and Nowak M A 2007 Evolution 61 2281
[2] Nowak M A 2006 Evolutionary Dynamics: Exploring theEquations of Life (Cambridge: Harvard University)
[3] Nowak M A 2006 Science 314 1560
[4] Traulsen A, Claussen J C and Hauert C 2005 Phys. Rev.Lett. 95 238701
[5] Smith J M 1982 Evolution and the Theory of Games(Cambridge: Cambridge University)
[6] Hofbauer J and Sigmund K 1998 Evolutionary Games andPopulation Dynamics (Cambridge: Cambridge University)
[7] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004 Nature 428 646
[8] Moran P A P 1962 The Statistical Processes ofEvolutionary Theory (Oxford: Clarendon)
[9] Hamilton W D 1964 J. Theor. Biol. 7 1
[10] Axelrod R and Hamilton W 1981 Science 2111390
[11] Nowak M A and Sigmund K 1998 Nature 393 573
[12] Traulsen A, Nowak M A 2006 Proc. Natl. Acad. Sci.USA 103 10952
[13] Nowak M A and May R M 1992 Nature 359 826
[14] Chen Y S, Lin H and Wu C X 2007 Physica A 385379
[15] Assenza S, G\'{omez-Garde\~{nes J and Latora V 2008 Phys. Rev. E 78 017101
[16] Hauert C and Doebeli M 2004 Nature 428 643
[17] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104.
[18] Santos F C, Pacheco J M and Lenaerts T 2006 Proc.Natl. Acad. Sci. U.S.A. 103 3490
[19] Santos F C, Rodrigues J F and Pacheco J M 2006 Proc.R. Soc. London B 273 51
[20] Santos F C and Pacheco J M 2006 J. Evol. Biol. 19 726
[21] Ohtsuki H, Hauert C, Lieberman E and Nowak M A 2006 Nature 441 502
[22] Hatzopoulos V and Jensen H J 2008 Phys. Rev. E 78 011904
[23] Hauert C and Szab\'{o G 2005 Am. J. Phys. 73405
[24] Szab\'{o G and F\'{ath G 2007 Phys. Rep. 446 97
[25] Wu Z X and Wang Y H 2007 Phys. Rev. E 75041114
[26] Wang W X, Ren J, Chen G, and Wang B H 2006 Phys.Rev. E 74 056113
[27] Wang W X, L\"{u J H, Chen G R and Hui P M 2008 Phys. Rev. E 77 046109
[28] Zhang M F et al 2008 Chin. Phys. Lett. 251494
[29] Zhong L X, Qiu T and Xu J R 2008 Chin. Phys. Lett. 25 2315
[30] Ficici S and Pollack J 2007 J. Theor. Biol. 247 426
Related articles from Frontiers Journals
[1] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 068902
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 068902
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 068902
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 068902
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 068902
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 068902
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 068902
[8] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 068902
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 068902
[10] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 068902
[11] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 068902
[12] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 068902
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 068902
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 068902
[15] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 068902
Viewed
Full text


Abstract