Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064701    DOI: 10.1088/0256-307X/26/6/064701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Particle Resistance Model for Flow through Porous Media
WU Jin-Sui1, YIN Shang-Xian2, ZHAO Dong-Yu3
1Department of Basic Teaching, North China University of Science and Technology, Beijing 1016012Faculty of Safety Engineering, North China Institute of Science and Technology, Beijing 1016013Faculty of Safety Engineering, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu 2009 Chin. Phys. Lett. 26 064701
Download: PDF(348KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere. The proposed model is expressed as a function of porosity, fluid property, particle size, fluid velocity (or Reynolds number) and fractal characters Df of particles in porous media. The model predictions are in good agreement with the experimental data. The validity of the proposed model is thus verified.
Keywords: 47.15.-x      47.55.Lm      05.45.Df     
Received: 03 December 2008      Published: 01 June 2009
PACS:  47.15.-x (Laminar flows)  
  47.55.Lm (Fluidized beds)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jin-Sui
YIN Shang-Xian
ZHAO Dong-Yu
[1] Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York: Wiley) chap 6
[2] Karl P and Denys F J 2003 Flow of Polymer Solutionsthrough Porous Media (Netherlands: Karl Denys)
[3] Ergun S 1952 Chem. Engin. Prog. 48 89
[4] Hicks R E 1970 Ind. Eng. Chem. Fundam 9 500
[5] Nemec D and Levec J 2005 Chem. Engin. Sci. 606947
[6] MacDonald F et al 1979 Ind. Eng. Chem. Fundam 18 199
[7] Hill R J et al 2001 J. Fluid Mech. 448 243
[8] Wu J S et al 2008 Transport Porous Media 71331
[9] Wu J S et al 2007 Int. J. Heat Mass Transfer 50 3925
[10] Mandelbrot B B 1982 The Fractal Geometry of NatureW. H. Freeman (New York) 23.
[11] Feder J and Aharony A 1989 Fractals in Physics(Amsterdam: North-Holland)
[12] Warren T L and Krajcinovic D 1996 Wear 196 1
[13] Katz A J et al 1985 Phys. Rev. Lett. 54 1325
[14] Krohn C E and Thompson A H 1986 Phys. Rev. B 33 6366
[15] Mandelbrot B B et al 1984 Nature 308 721
[16] Xie H, Bhaskar R and Li J 1993 Minerals andMetallurgical Processing 10 36
[17] Yu B M et al 2002 Int. J. Heat Mass Transfer 45 2983
[18] Yu B M and Lee L J 2002 Polymers Compounds 23 201
[19] Karacan C O et al 2003 J. Petroleum Sci. Eng. 40 159
[20] Yu B M 2008 Appl. Mech. Rev. 61 050801
[21] Meng F G et al 2005 Membrane Science 262 107
[22] Yu B M and Li J H 2001 Fractals 9 365
[23] Bai K S 2005 Fluid Mech. Pump and Fan p 178 (inChinese)
[24] Zhang G Q et al 2006 Fluid Mech. p 114 (in Chinese)
[25] Kong X Y 1999 Advanced Mechanics of Fluids in PorousMedia p 21 (in Chinese)
[26] Yu B M 2005 Chin. Phys. Lett. 22 158
[27] Yu J et al 2002 Appl. Thermal Engin. 22 641
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 064701
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 064701
[3] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 064701
[4] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 064701
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 064701
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 064701
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 064701
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 064701
[9] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 064701
[10] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 064701
[11] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 064701
[12] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 064701
[13] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 064701
[14] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 064701
[15] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 064701
Viewed
Full text


Abstract