Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064402    DOI: 10.1088/0256-307X/26/6/064402
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence
LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENG
Chu-Guang
State Key Laboratory for Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng et al  2009 Chin. Phys. Lett. 26 064402
Download: PDF(288KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number St is less than 1.0, it reaches the minimal value when St is around 1.0, then it increases if St increases further. However, the scalar
dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, <r>p, are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and flow structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when St is around 1.0.
Keywords: 44.35.+c      47.55.Kf      47.27.Ek     
Received: 23 January 2009      Published: 01 June 2009
PACS:  44.35.+c (Heat flow in multiphase systems)  
  47.55.Kf (Particle-laden flows)  
  47.27.ek (Direct numerical simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064402       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ya-Ming
LIU Zhao-Hui
HAN Hai-Feng
LI Jing
WANG Han-Feng
ZHENGChu-Guang
[1] Warhaft Z 2000 Ann. Rev. Fluid. Mech. 32 203
[2] Sato Y, Deutsch E and Simonin O 1998 Int. J. Heat andFluid Flow 19 187
[3] Jaberi F A 1998 Int. J. Heat Mass Transfer 414081
[4] Jaberi F A and Mashayek F 2000 Int. J. Heat MassTransfer 43 993
[5] Pope S B 1990 Proc. 23rd Symp. Combust. (Pittsburgh:The Combust. Inst.) p 591
[6] Pope S B 1985 Prog. Energy Combust. Sci. 11119
[7] Zaichik L I 1999 Phys. Fluids 11 1521
[8] Pandya R V and Mashayek F 2003 J. Fluid Mech. 475 205
[9] Simonin O 1996 Lecture Series 1996-02 (Brussels,Belgium: Von Karman Institute for Fluid Dynamics)
[10] Moissette S, Oesterl\'{e B and Boulet P 2001 Int.J. Heat Mass Transfer 22 220
[11] Yeung P K 2001 J. Fluid Mech. 427 241
[12] He Z, Liu Z H, Chen S et al 2006 Sic. Chin. E 49 210
[13] Eswaran V and Pope S B 1988 Phys. Fluids 31506
[14] Balachander S and Maxey M R 1989 J. Comput. Phys. 83 96
[15] Squires K and Eaton J 1991 Phys. Fluids A 31169
[16] Holzer M and Siggia E D 1994 Phys. Fluids 61820
[17] Pumir A 1994 Phys. Fluids 6 2118
[18] Sirivat and Warhaft Z 1983 J. Fluid Mech. 128 323
[19] Warhaft Z and Lumley J L 1978 J. Fluid Mech. 88 659
[20] Overholt M R and Pope S B 1996 Phys. Fluids 8 3128
[21] Brethouwer G, Hunt J C R and Nieuwstadt F T M 2003 J. Fluid. Mech. 474 193
Related articles from Frontiers Journals
[1] LV Hong, TANG Sheng-Li**, ZHOU Wen-Ping . Direct Numerical Simulation of Particle Migration in a Simple Shear Flow[J]. Chin. Phys. Lett., 2011, 28(8): 064402
[2] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 064402
[3] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 064402
[4] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 064402
[5] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 064402
[6] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 064402
[7] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 064402
[8] LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui. Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow[J]. Chin. Phys. Lett., 2009, 26(9): 064402
[9] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 064402
[10] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 064402
[11] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 064402
[12] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 064402
[13] LUO Xiao-Ping, CUI Z. F.. Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation[J]. Chin. Phys. Lett., 2008, 25(6): 064402
[14] TANG Yi, PEI Jing, PAN Long-Fa, NI Yi, HU Hua, ZHANG Bu-Qing. Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation[J]. Chin. Phys. Lett., 2008, 25(5): 064402
[15] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 064402
Viewed
Full text


Abstract