Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064206    DOI: 10.1088/0256-307X/26/6/064206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Two-Dimensional (2D) Polygonal Electromagnetic Cloaks
LI Chao, YAO Kan, LI Fang
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LI Chao, YAO Kan, LI Fang 2009 Chin. Phys. Lett. 26 064206
Download: PDF(807KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design `invisible cloak devices' recently. We present an important class of two-dimensional (2D) cloaks with polygon geometries. Explicit expressions of transformed medium parameters are derived with their unique properties investigated. It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary. At most positions, the principle axes of permittivity tensors do not align with position vectors. An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified. Since polygon cloaks can be tailored to resemble any objects, the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries
Keywords: 42.79.-e      42.25.Fx      42.25.Gy      41.20.Jb     
Received: 06 October 2008      Published: 01 June 2009
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064206       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chao
YAO Kan
LI Fang
[1] Pendry J B et al 2006 Science 312 1780
[2] Schurig D et al 2006 Science 314 977
[3] Schurig D et al 2006 Opt. Express 14 9794
[4] Cai W et al 2007 Nat. Photonics 1 224
[5] Ruan Z et al 2007 Phys. Rev. Lett. 99 113903
[6] Zolla F et al 2007 Opt. Lett. 32 1069
[7] Greenleaf A et al 2007 Opt. Express 15 12717
[8] Huang Y et al 2007 Opt. Express 15 11133
[9] Rahm M, Schurig D, Roberts D A, Cummer S A et al 2008 Photon. Nanostruct.: Fundam. Applic. 6 87
[10] Yao K, Li C and Li F 2008 Chin. Phys. Lett. 25 1657
[11] Kwon D H et al 2008 Appl. Phys. Lett. 92113502
[12] Kwon D H et al 2008 Appl. Phys. Lett. 92013505
[13] Yan W, Yan M et al 2008 New J. Phys. 10043040
[14] Li C and Li F 2008 Opt. Express 16 13414
[15] Nicolet A, Zolla F et al 2008 Opt. Lett. 331584
[16] Li C, Yao K, and Li F 2008 Opt. Express 1619366
[17] Ma H, Qu S B et al 2008 Opt. Express 1615449
[18] Zhang J J et al 2008 J. Opt. Soc. Am. B 251776
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 064206
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 064206
[3] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 064206
[4] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 064206
[5] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 064206
[6] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 064206
[7] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 064206
[8] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 064206
[9] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 064206
[10] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 064206
[11] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 064206
[12] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 064206
[13] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 064206
[14] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 064206
[15] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 064206
Viewed
Full text


Abstract