Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 064205    DOI: 10.1088/0256-307X/26/6/064205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coexisting Raman- and Rayleigh-Enhanced Four-Wave Mixing in Femtosecond Polarization Beats
NIE Zhi-Qiang1, ZHAO Yan1, ZHANG Yan-Peng1, GAN Chen-Li1, ZHENG Huai-Bin1, LI Chang-Biao1, LU Ke-Qing2
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 7100492State Key Laboratory of Transient Optics and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710068
Cite this article:   
NIE Zhi-Qiang, ZHAO Yan, ZHANG Yan-Peng et al  2009 Chin. Phys. Lett. 26 064205
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the polarization interference of Raman- and Rayleigh-enhanced four-wave mixing processes, heterodyne detection of the Raman, Rayleigh and coexisting Raman and Rayleigh femtosecond difference-frequency polarization beats is investigated in the cw and the three Markovian stochastic models, respectively. These two processes exhibit asymmetric and symmetric spectra, respectively, and the thermal effect in them can be suppressed by a field-correlation method. Such studies of coexisting Raman- and Rayleigh-enhanced four-wave mixing processes can have important applications in coherence quantum control, and quantum information processing.
Keywords: 42.65.Es      42.65.Re      42.50.Ar      42.65.Hw     
Received: 08 July 2008      Published: 01 June 2009
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.50.Ar  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/064205       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/064205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIE Zhi-Qiang
ZHAO Yan
ZHANG Yan-Peng
GAN Chen-Li
ZHENG Huai-Bin
LI Chang-Biao
LU Ke-Qing
[1] Fu P M et al 2002 Phys. Rev. Lett. 88 113902
[2] Zhang Y P et al 2005 J. Opt. Soc. Am. B 22 694
[3]Zhang Y P et al 2005 Phys. Rev. A 72 013812
[4]X. Mi et al 2000 J. Opt. Soc. Am. B 17 1543
[5]Zhang Y P et al 2007 Phys. Rev. Lett. 99 123603
[6]Zhang Y P et al 2007 Opt. Lett. 32 091120
[7]Wu Y et al 2003 Phys. Rev. A 67 013811
[8]P. Fu et al 1994 Phys. Rev. A 50 698
[9]Yang X X et al 2005 Chin. Phys. Lett. 22 1134
[10]Ulness D J 2003 J. Phys. Chem. A 107 8111
Related articles from Frontiers Journals
[1] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 064205
[2] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 064205
[3] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 064205
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 064205
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 064205
[6] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 064205
[7] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 064205
[8] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 064205
[9] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 064205
[10] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 064205
[11] LIU Hui, ZHANG Hang, SI Jin-Hai**, YAN Li-He, CHEN Feng, HOU Xun . Elimination of the Coherent Artifact in a Pump-Probe Experiment by Directly Detecting the Background-Free Diffraction Signal[J]. Chin. Phys. Lett., 2011, 28(8): 064205
[12] YUN Chen-Xia, TENG Hao**, ZHANG Wei, WANG Li-Feng, ZHAN Min-Jie, HE Xin-Kui, WANG Bing-Bing, WEI Zhi-Yi** . Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses[J]. Chin. Phys. Lett., 2011, 28(7): 064205
[13] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 064205
[14] WEN Jing, JIANG Hong-Bing**, YU Jing, YANG Hong, GONG Qi-Huang** . Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal[J]. Chin. Phys. Lett., 2011, 28(6): 064205
[15] QIAO Yao-Jun**, LIU Xue-Jun, JI Yue-Feng . Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems[J]. Chin. Phys. Lett., 2011, 28(6): 064205
Viewed
Full text


Abstract