Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060507    DOI: 10.1088/0256-307X/26/6/060507
GENERAL |
Pattern Synchronization in a Two-Layer Neuronal Network
SUN Xiao-Juan, LU Qi-Shao
Division of General Mechanics, Beihang University, Beijing 100191
Cite this article:   
SUN Xiao-Juan, LU Qi-Shao 2009 Chin. Phys. Lett. 26 060507
Download: PDF(1352KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pattern synchronization in a two-layer neuronal network is studied. For a single-layer network of Rulkov map neurons, there are three kinds of patterns induced by noise. Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way; however, for small and large noise intensities there exist excitable patterns and disordered
patterns, respectively. For a neuronal network coupled by two single-layer networks with noise intensity differences between layers, we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases. The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.
Keywords: 05.45.-a      05.45.Xt     
Received: 17 February 2009      Published: 01 June 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060507       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Xiao-Juan
LU Qi-Shao
[1] Kazantsev V B, Nekorkin V I, Artyuhin D V and Velarde M G2000 Phys. Rev. E 63 016212
[2] Nekorkin V I, Kazantsev V B and Velarde M G 2001 Physica D 151 1
[3] Li C P, Sun W G and Kurths J 2007 Phys. Rev. E 76 046204
[4] Perc M 2006 Eur. J. Phys. 27 451
[5] Wang Q Y, Duan Z S, Huang L, Chen G R and LU Q S 2007 New J. Phys. 9 383
[6] Sun X J, Lu Q S and Kurths J 2008 Physica A 387 6679
[7] Sun X J, Lu Q S, Kurths J and Wang Q Y 2009 Int. J.Bifur. Chaos (accepted)
[8] Rulkov N F 2001 Phys. Rev. Lett. 86 183
[9] Rulkov N F 2002 Phys. Rev. E 65 041922
[10] H\"utt M T, Neff R, Busch H and Kaiser F 2002 Phys.Rev. E 66 026117
[11] Busch H and Kaiser F 2003 Phys. Rev. E 67041105
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060507
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060507
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060507
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060507
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060507
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 060507
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 060507
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060507
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 060507
Viewed
Full text


Abstract