Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060504    DOI: 10.1088/0256-307X/26/6/060504
GENERAL |
Resonant-Like Activation in a Bistable System with Noise and Time Delay
NIE Lin-Ru1, GONG Ai-Ling1, MEI Dong-Cheng2
1Faculty of Science, Kunming University of Science and Technology, Kunming 6500932Department of Physics, Yunnan University, Kunming 650091
Cite this article:   
NIE Lin-Ru, GONG Ai-Ling, MEI Dong-Cheng 2009 Chin. Phys. Lett. 26 060504
Download: PDF(281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A bistable system with noise and time delay is investigated. Theoretical analysis and stochastic simulation show that: (i) In the case of a system driven only by multiplicative Gaussian white noise, the mean first-passage time for a particle to reach the other stable state from one stable state exhibits a minimum with respect to delay time, i.e., a resonant-like activation (RA) phenomenon. (ii) In the action of additive and multiplicative noise, as the additive noise intensity increases, no matter whether a correlation between the two types of noise exists or not, the RA gradually disappears. (iii) The correlation strength between the two types of noise does not influence the existence of the RA.
Keywords: 05.40.Ca      02.50.-r      02.60.Cb     
Received: 30 September 2008      Published: 01 June 2009
PACS:  05.40.Ca (Noise)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060504       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIE Lin-Ru
GONG Ai-Ling
MEI Dong-Cheng
[1] Millonas M 1996 Noise and Order: The New Synthesis(New York: Springer)
[2] Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318
[3] Mantegna R N and Spagnolo B 2000 Phys. Rev. Lett. 84 3025 Iwaniszewski J, Kaufman I K, McClintock P V E and McKane A J2000 Phys. Rev. E 61 1170.
[4] Reimann P 1995 Phys. Rev. E 52 1579 Reimann P 1994 Phys. Rev. E 49 4938 Bier M and Astumian R D 1993 Phys. Rev. Lett. 711649 Z\"{urcher U and Doering C R 1993 Phys. Rev. E 47 3862
[5] Li J H and Han Y X 2006 Phys. Rev. E 74041118 Li J H, Hu B, Xing D Y and Dong J M 1999 Phys. Rev. E 60 6443 Li J H, Xing D Y, Dong J M and Hu B 1999 Phys. Rev. E 60 1324
[6] H\"{anggi P and Riseborough P 1983 Phys. Rev. A 27 3379 Marchi M, Marchesoni F, Gammaitoni L, Menichella S E andSantucci S 1996 Phys. Rev. E 54 3479 Witt A, Neiman A and Kurths J 1997 Phys. Rev. E 55 5050
[7] Zhang X P and Bao J D 2005 Chin. Phys. Lett. 21 283 Wu D J, Cao L and Ke S Z 1994 Phys. Rev. E 502496
[8] Jia Y, Li J R and Chen Y C 1997 Chin. Phys. Lett. 14 245
[9] Jia Y and Li J R 1996 Phys. Rev. E 53 5786
[10] Jia Y and Li J R 1996 Phys. Rev. E 53 5764
[11] Mei D C, Xie C W and Zhang L 2003 Phys. Rev. E 68 051102
[12] Mei D C, Xie G Z, Cao L and Wu D J 1999 Chin. Phys.Lett. 16 327
[13] Mei D C, Xie G Z, Cao L and Wu D J 1999 Phys. Rev.E 59 3880
[14] Xie C W and Mei D C 2003 Chin. Phys. Lett. 20813
[15] Mackey C and Glass L 1977 Science 197 287
[16] Bressoff P C and Coombes S 1997 Phys. Rev. Lett. 78 4665 Kim S, Park S H and Ryn C S 1999 Phys. Rev. Lett. 82 1620
[17] Nie L R and Mei D C 2007 Europhys. Lett. 7920005
[18] Nie L R and Mei D C 2008 Phys. Rev. E 77031107
[19] Huber D and Tsimring L S 2003 Phys. Rev. Lett. 91 260601 Yu J, Dong S H and Lozada C M 2004 Phys. Rev. E 69 056225 Huber D and Tsimring L S 2005 Phys. Rev. E 71036150
[20] Wu D and Zhu S Q 2007 Phys. Lett. A 363 202
[21] Guillouzic S, Heureux I L and Longtin A 1999 Phys.Rev. E 59 3970
[22] Nie L R and Mei D C 2007 Chin. Phys. Lett. 243074
[23] Frank T D 2005 Phys. Rev. E 72 011112 Frank T D 2005 Phys. Rev. E 71 031106
[24] Straonovich R L 1963 Topics in the Theory of RandomNoise (Gordon and Breach, New York) Vol 1 Lindenberg K and West B J 1986 J. Stat. Phys. 42201 Masoliver J, West B J and Lindenberg K 1987 Phys. Rev.A 35 3086
[25] Bao J D 1992 Chin. Phys. Lett. 9 1
[26] Knuth D E 1969 The Art of Computer Programming(Reading, MA: Addison-Wesley) vol 2
[27] Bao J D 2000 Phys. Lett. A 265 244
[28] Li J H and Huang Z Q 1998 Phys. Rev. E 58 139 Bao J D, Hanggi P and Zhuo Y Z 2005 Phys. Rev. E 72 061106
Related articles from Frontiers Journals
[1] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 060504
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060504
[3] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 060504
[4] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060504
[5] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 060504
[6] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 060504
[7] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 060504
[8] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060504
[9] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 060504
[10] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 060504
[11] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 060504
[12] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 060504
[13] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 060504
[14] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 060504
[15] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 060504
Viewed
Full text


Abstract