Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060501    DOI: 10.1088/0256-307X/26/6/060501
GENERAL |
Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation
TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
TU Tao, WANG Lin-Jun, HAO Xiao-Jie et al  2009 Chin. Phys. Lett. 26 060501
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that the conventional renormalization group method can be used to give an analytic description of the evolution of a soliton in a perturbed KdV equation. The renormalization group equations describe the deformation of the soliton as the effect of perturbations. The method is concise and easy to understand and the results obtained agree with the results of other approaches.
Keywords: 05.10.Cc      05.45.Yv      64.60.Ae      02.30.Mv     
Received: 21 November 2008      Published: 01 June 2009
PACS:  05.10.Cc (Renormalization group methods)  
  05.45.Yv (Solitons)  
  64.60.ae (Renormalization-group theory)  
  02.30.Mv (Approximations and expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TU Tao
WANG Lin-Jun
HAO Xiao-Jie
GUO Guang-Can
GUO Guo-Ping
[1]Stanley H E 1971 Introduction to Phase Transitions andCritical Phenomena (Oxford: Oxford University)
[2] Zinn-Justin J 1989 Quantum Field Theory and CriticalPhenomena (Oxford: Clarendon)
[3] Chen L Y, Goldenfeld N, and Oono Y 1994 Phys. Rev.Lett. 73 1311
[4] Chen L Y, Goldenfeld N and Oono Y 1996 Phys. Rev. E 54 376
[5] Nozaki K, Oono Y and Shiwa Y 2000 Phy. Rev. E 62 4501
[6] Nozaki K and Oono Y 2000 Phy. Rev. E 62 4501
[7] Shiwa Y 2001 Phys. Rev. E 63 016119
[8] Tu T and Cheng G 2002 Phys. Rev. E 66 046625
[9] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[10] Kaup D J 1976 SIAM J. Appl. Math. 31 121
[11] Kaup D J and Newll A C 1978 Proc. R. Soc. LondonA 361 413
[12] Karpman V I 1977 JETP Lett. 25 271
[13] Karpman V I and Maslov E M 1977 Sov. Phys. JETP 46 281
[14] Keener J P and McLaughlin D W 1977 J. Math. Phys. 18 2008
[15] Keener J P and McLaughlin D W 1977 Phys. Rev. A 16 777
[16] McLaughlin D W and Scott A C 1978 Phys. Rev. A 18 1652
[17] Herman R L 1990 J. Phys. A 23 2327
[18] Yan J and Tang Y 1996 Phys. Rev. E 54 6816
[19] Mann E 1997 J. Math. Phys. 38 3772
[20] Peskin M E and Schroeder D V 1995 An Introduction toQuantum Field Theory (New York: Addison-Wesley)
[21] Gell-Mann M and Low F E 1954 Phys. Rev. 951300
[22] Karpman V I 1977 Phys. Lett. A 60 307
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060501
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060501
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060501
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060501
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060501
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060501
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 060501
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 060501
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 060501
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 060501
Viewed
Full text


Abstract