Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060401    DOI: 10.1088/0256-307X/26/6/060401
GENERAL |
A New Solution to Einstein's Field Equations
SHEN Ming
Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027
Cite this article:   
SHEN Ming 2009 Chin. Phys. Lett. 26 060401
Download: PDF(163KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct a new exact solution to the vacuum Einstein field equations. This solution possesses a naked physical singularity. The norm of the Riemann curvature tensor of the solution takes infinity at some points and the solution does not have any event horizon around the singularity. A detailed analysis of this new singularity is also presented.
Keywords: 04.20.Jb      04.20.Dw      98.80.Jk      02.30.Jr     
Received: 04 November 2008      Published: 01 June 2009
PACS:  04.20.Jb (Exact solutions)  
  04.20.Dw (Singularities and cosmic censorship)  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Ming
[1] Bi\v{c\'{ak J 2000 Lecture Notes in Phys. 540 1
[2] Hawking S W and Ellis G F R 1973 The Large ScaleStructure of Spacetime (Cambridge: Cambridge University)
[3] Jiang Q Q and Yang S Z 2006 Chin. Phys. Lett. 23 3169
[4] Kerr R P 1963 Phys. Rev. Lett. 11 237
[5] Kong D X and Liu K F arXiv 0808 1100v2
[6] Kong D X, Liu K F and Shen M arXiv 0807 4981
[7] Kong D X, Liu K F and Shen M arXiv 0809 0046
[8] Schwarzchild K 1916 Sitz. Preuss. Akad. Wiss. 1 189
[9] Stephani H, Kramer D, MacCallum M, Hoenselaers C and HerltE 2003 Cambridge Monographs on Mathematical Physics(Cambridge: Cambridge University)
[10] Szekeres P 1965 J. Math. Phys. 6 1387
[11] Wei Y H 2008 Chin. Phys. Lett. 25 2782
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060401
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060401
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060401
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060401
[5] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 060401
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 060401
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060401
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060401
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060401
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060401
[11] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 060401
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060401
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 060401
[14] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 060401
[15] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 060401
Viewed
Full text


Abstract