Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 128901    DOI: 10.1088/0256-307X/26/12/128901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Robustness of Complex Networks under Attack and Repair
HU Bin, LI Fang, ZHOU Hou-Shun
Department of Management Science, Naval University of Engineering, Wuhan 430033
Cite this article:   
HU Bin, LI Fang, ZHOU Hou-Shun 2009 Chin. Phys. Lett. 26 128901
Download: PDF(328KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To study the robustness of complex networks under attack and repair, we introduce a repair model of complex networks. Based on the model, we introduce two new quantities, i.e. attack fraction fa and the maximum degree of the nodes that have never been attacked ~Ka, to study analytically the critical attack fraction and the relative size of the giant component of complex networks under attack and repair, using the method of generating function. We show analytically and numerically that the repair strategy significantly enhances the robustness of the scale-free network and the effect of robustness improvement is better for the scale-free networks with a smaller degree exponent. We discuss the application of our theory in relation to the
understanding of robustness of complex networks with reparability.
Keywords: 89.75.Hc      89.75.Fb      05.70.Jk     
Received: 26 June 2009      Published: 27 November 2009
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
  05.70.Jk (Critical point phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/128901       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/128901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Bin
LI Fang
ZHOU Hou-Shun
[1] Doyle J C, Alderson D L, Li L, Low S, Roughan M, ShalunovS, Tanaka R and Willinger W 2005 Proceedings of the NationalAcademy of Sciences of the United States of America 102 14497
[2] Bassett D S and Bullmore E 2006 Neuroscientist 12 512
[3] Guimera R and Amaral L A N 2005 Nature 433 895
[4] Amaral L A N, Scala A, Barthelemy M and Stanley H E 2000 Proceedings of the National Academy of Sciences of the UnitedStates of America 97 11149
[5] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[6] Newman M E J 2003 SIAM Rev. 45 167
[7] Stefono B 2006 Phys. Rep. 424 175
[8] Albert R, Jeong H and Barabasi A L 2000 Nature 406 378
[9] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys.Rev. E 65 056109.
[10] Callaway D S, Newman M E J, Strogatez S H and Watts D J2000 Phys. Rev. Lett. 85 5468
[11] Wu J, Deng H, Tan Y and Zhu D 2007 J. Phys. A 40 2665
[12] Shargel B, Sayama H, Epstein I R and Bar-Yam Y 2003 Phys. Rev. Lett. 90 068701
[13] Paul G, Tanizawa T, Havlin S and Stanley H E 2004 Eur. Phys. J. B 38 187
[14] Wang B, Tang H W, Guo C H and Xiu Z L 2006 PhysicaA 363 591
[15] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263
[16] Newman M E J, Strogatz S H and Watts D J 2001 Phys.Rev. E 64 026118.
[17] Cohen R, Erez K, ben-Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
[18] Molloy M and Reed B A 1995 Random Structures andAlgorithms 6 161
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 128901
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 128901
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 128901
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 128901
[11] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 128901
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 128901
[15] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 128901
Viewed
Full text


Abstract