Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120503    DOI: 10.1088/0256-307X/26/12/120503
GENERAL |
One Specific State Variable for a Class of Fractional-Order Chaotic Systems and Its Applications
ZHOU Ping1,2, CHENG Yuan-Ming2
1Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 4000652Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065
Cite this article:   
ZHOU Ping, CHENG Yuan-Ming 2009 Chin. Phys. Lett. 26 120503
Download: PDF(419KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a specific state variable for a class of fractional-order chaotic systems. By using a specific state variable and its (q-order, 2q-order, ..., and (n-1) q-order) time derivatives, all the state variables can be obtained. Several fractional-order chaotic systems are used to demonstrate this idea. A hybrid projective synchronization scheme is presented to show its applications.
Keywords: 05.45.-a      05.45.Xt     
Received: 06 August 2009      Published: 27 November 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ping
CHENG Yuan-Ming
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Miliou A N, Antoniades I P and Stavrinides S G 2007 Nonlinear Anal. 8 1003
[3] Aguirre C, Campos D, Pascual P and Serrano E 2006 Neurocomputing 69 1116
[4] Gross N, Kinzel W, Kanter I, Rosenbluh M and Khaykovich L2006 Opt. Commun. 267 464
[5] Ge Z M and Ou C Y 2007 Chaos Solitons and Fractals 34 262
[6]Li C G and Chen G R 2004 Physica A 341 55
[7] Peng G J and Jiang Y L 2008 Phys. Lett. A 3723963
[8] Chen X R, Liu C X and Li Y X 2008 Acta. Phys. Sin. 57 1453 (in Chinese)
[9] Peng G J, Jiang Y L and Chen F 2008 Physica A 387 3738
[10] Shao S Q 2009 Chaos, Solitons and Fractals 391572
[11]Zhong Q S, Bao J F, Yu Y B and Liao X F 2008 Chin.Phys. Lett. 25 2812
[12] Yang X S 1999 Phys. Lett. A 260 340
[13] Caputo M and Geophys J R 1967 Astron. Soc. 13529
[14]Yang X S 2002 Int. J. Bifur. Chaos 12 1159
[15] Wang X Y and He Y J 2008 Phys. Lett. A 372435
[16]Zhou P, Wei L J and Chen X F 2009 Chin. Phys. B 18 2674
[17]Chen X R, Liu C X and Wang F Q 2008 Chin. Phys. B 17 1664
[18] Zhang R X and Yang S P 2009 Chin. Phys. B 183295
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120503
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 120503
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 120503
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 120503
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 120503
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120503
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 120503
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 120503
Viewed
Full text


Abstract