Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120305    DOI: 10.1088/0256-307X/26/12/120305
GENERAL |
Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion

ZHANG Yi

College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011
Cite this article:   
ZHANG Yi 2009 Chin. Phys. Lett. 26 120305
Download: PDF(299KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The stability of manifold of equilibrium states for a class of nonholonomic systems in relative motion is studied. The Voronets equations and their canonical forms for dynamics of relative motion of the nonholonomic systems are established. The equations of relative equilibrium for the systems are given, and some criteria of the stability for the manifold of relative equilibrium states are obtained. An example is given to illustrate the application of the results.
Keywords: 03.20.+i      45.50.-j     
Received: 04 September 2009      Published: 27 November 2009
PACS:  03.20.+i  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yi
[1] Whittaker E T 1904 A Treatise on the AnalyticalDynamics of Particles and Rigid Bodies (England: CambridgeUniversity)
[2]Zhu H P and Mei F X 1998 Adv. Mech. 28 17 (inChinese)
[3]Mikhailov G K et al 1990 Stability and AnalyticalMechanics (New York: Hemishere Publishing Corporation)
[4]Mei F X 1992 Chin. Sci. Bull. 37 1397
[5]Mei F X, Shi R C, Zhang Y F and Zhu H P 1997 Stabilityof Motion of Constrained Mechanical Systems (Beijing: BeijingInstitute of Technology) (in Chinese)
[6]Zhu H P and Ge W K 1994 J. Beijing Inst. Technol. 14 6 (in Chinese)
[7]Zhu H P and Mei F X 1994 Chin. Sci. Bull. 391081
[8]Zhu H P and Mei F X 1995 Appl. Math. Mech. 16237
[9]Zhu H P et al 1995 Appl. Math. Mech. 16 635
[10]Li G C and He S B 1998 Appl. Math. Mech. 19135
[11]Chen X W 1998 Henan Sci. 16 26
[12]Luo S K et al 2001 Mech. Res. Commun. 28 463
[13]Zhu H P and Yu A B 2002 Mech. Res. Commun. 29307
[14]Karapetyan A V et al 2002 Regul. Chaotic Dyn. 7 81
[15]Kalenova V I et al 2002 Prikl. Mat. Mekh. 66192
[16]Kalenova V I et al 2004 Prikl. Mat. Mekh. 68195
[17]Xu X J and Mei F X 2006 Chin. Phys. 15 1134
[18]Mei F X et al 2007 Chin. Phys. Lett. 24 1133
[19]Shang M et al 2007 J. Beijing Inst. Technol. 16 5
[20]Kalenova V I et al 2007 J. Math. Sci. 146 5877
[21]Mei F X et al 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology) (in Chinese)
[22]Nikolenko I V 1968 Ukrainian Math. J. 20 121
Related articles from Frontiers Journals
[1] Amjad Hussain, Syed Tauseef Mohyud-Din, Ahmet Yildirim. Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System[J]. Chin. Phys. Lett., 2012, 29(3): 120305
[2] ZHANG Yun-Peng, DUAN Hai-Bin, **, ZHANG Xiang-Yin . Stable Flocking of Multiple Agents Based on Molecular Potential Field and Distributed Receding Horizon Control[J]. Chin. Phys. Lett., 2011, 28(4): 120305
[3] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 120305
[4] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 120305
[5] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 120305
[6] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 120305
[7] YANG Yan, WU Guan-Hao, YU Yong-Liang, TONG Bing-Gang. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 120305
[8] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 120305
[9] MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang. Stability of Motion of a Nonholonomic System[J]. Chin. Phys. Lett., 2007, 24(5): 120305
[10] CAO Bing-Yang, CHEN Min, GUO Zeng-Yuan. Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2004, 21(9): 120305
[11] GUO Yong-Xin, SONG Yan-Bin, ZHANG Xiao-Bin, CHI Dong-Pyo. An Almost-Poisson Structure for Autoparallels on Riemann-Cartan Spacetime[J]. Chin. Phys. Lett., 2003, 20(8): 120305
[12] LUO Shao-Kai. New Types of the Lie Symmetries and Conserved Quantities for a Relativistic Hamiltonian System[J]. Chin. Phys. Lett., 2003, 20(5): 120305
[13] LUO Shao-Kai. Form Invariance and Lie Symmetries of the Rotational Relativistic Birkhoff System[J]. Chin. Phys. Lett., 2002, 19(4): 120305
[14] ZHOU Zhong, PENG Shou-Li,. Star Products of Quartic Maps with Two Equally High Peaks[J]. Chin. Phys. Lett., 2000, 17(4): 120305
[15] FAN Hong-yi, PAN Xiao-yin, CHEN Bo-zhan. Two-Parameter Correlated Negative Binomial State in Two-Mode Fock Space[J]. Chin. Phys. Lett., 1998, 15(7): 120305
Viewed
Full text


Abstract