Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 115201    DOI: 10.1088/0256-307X/26/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effect of Air Gap on Uniformity of Large-Scale Surface-Wave Plasma
LAN Chao-Hui1, HU Xi-Wei2, JIANG Zhong-He2, LIU Ming-Hai2
1Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 6219002College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LAN Chao-Hui, HU Xi-Wei, JIANG Zhong-He et al  2009 Chin. Phys. Lett. 26 115201
Download: PDF(1017KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of air gap on the uniformity of large-scale surface-wave plasma (SWP) in a rectangular chamber device is studied by using three-dimensional numerical analyses based on the finite difference time-domain (FDTD) approximation to Maxwell's equations and plasma fluid model. The spatial distributions of surface wave excited by slot-antenna array and the plasma parameters such as electron density and temperature are presented. For different air gap thicknesses, the results show that the existence of air gap would severely weaken the excitations of the surface wave and thereby the SWP. Thus the air gap should be eliminated completely in the design of the SWP source, which is opposite to the former research results.
Keywords: 52.35.Hr      52.50.Dg     
Received: 09 July 2009      Published: 30 October 2009
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.50.Dg (Plasma sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/115201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/115201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAN Chao-Hui
HU Xi-Wei
JIANG Zhong-He
LIU Ming-Hai
[1] Ghanashev I and Sugai H 2000 Phys. Plasmas 73051
[2] Ganashev I, Nagatsu M and Sugai H 1997 Jpn. J. Appl.Phys. 36 337
[3] Sugai H, Ghanashev I and Nagatsu M 1998 PlasmaSources Sci. Technol. 7 192
[4] Kousaka H and Ono K 2002 Jpn. J. Appl. Phys. 41 2199
[5] Chen Q, Aoyagi H P and Katsurai M 1999 IEEE Trans.Plasma Sci. 27 164
[6] Tatarova E, Dias F M and Ferreira C M 1998 J. Appl.Phys. 83 4602
[7] Tatarova E, Dias F M, Henriques J and Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866
[8] Xu X, Liu F, Zhou Q H, Liang B, Liang Y Z and Liang R Q2008 Appl. Phys. Lett. 92 011501
[9] Liang Y z, Ou Q R, Liang B and Liang R Q 2008 Chin.Phys. Lett. 25 1761
[10] Chen Z Q, Zhou P Q, Chen W, Lan C H, Liu M H and Hu X W2008 Plasma Sci. Technol. 10 655
[11] Lan C H, Chen Z Q, Liu M H and Hu X W 2009 PlasmaSci. Technol. 11 66
[12] Lan C H, Lan C Z, Hu X W, Chen Z Q and Liu M H 2009 Chin. Phys. B 18 2412
[13] Taflove A 1995 Computational Electrodynamics: theFinite-Difference Time-Domain Method (Boston: Artech House)
[14] Kashiwa T and Fukai I 1990 Microwave Opt. Technol.Lett. 3 203
[15] Kashiwa T. and Fukai I 1990 IEEE Trans. Inst.Electron. Inform. Commun. Eng. 73 1326
Related articles from Frontiers Journals
[1] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 115201
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 115201
[3] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 115201
[4] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 115201
[5] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 115201
[6] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 115201
[7] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 115201
[8] NI Guo-Hua, MENG Yue-Dong, CHENG Cheng, LAN Yan. Characteristics of a Novel Water Plasma Torch[J]. Chin. Phys. Lett., 2010, 27(5): 115201
[9] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 115201
[10] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 115201
[11] GAO Wei, SUN Bin, DING Zhen-Feng. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities[J]. Chin. Phys. Lett., 2009, 26(6): 115201
[12] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 115201
[13] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 115201
[14] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 115201
[15] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 115201
Viewed
Full text


Abstract