CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Time-Resolved Photoluminescence of Metamorphic InGaAs Quantum Wells |
MA Shan-Shan, WANG Bao-Rui, SUN Bao-Quan, WU Dong-Hai, NI Hai-Qiao, NIU Zhi-Chuan |
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 |
|
Cite this article: |
MA Shan-Shan, WANG Bao-Rui, SUN Bao-Quan et al 2009 Chin. Phys. Lett. 26 107803 |
|
|
Abstract We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55μm at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20K.
|
Keywords:
78.67.De
78.47.+p
78.55.Cr
|
|
Received: 16 April 2009
Published: 27 September 2009
|
|
|
|
|
|
[1] King R R et al 2007 Appl. Phys. Lett. 90183516 [2] Jo S J, Ihn S G and Song J I 2005 Appl. Phys. Lett. 86 111903 [3] Zhukov A E et al 2003 Semiconductors 37 1119 [4] T{\aangring I, Wang S, Sadeghi M and Larsson A 2006 Electron. Lett. 42 691 [5] T{\aangring I et al 2007 Appl. Phys. Lett. 91221101 [6] Wu D H et al 2008 Electron. Lett. 44 474 [7] T{\aangring I, Wang S M, Gu Q F, Wei Y Q, Sadeghi M,Larsson A, Zhao Q X, Akram M N and Berggren J 2005 Appl. Phys.Lett. 86 171902 [8] Kageyama T, Miyamoto T, Ohta M, Matsuura T, Matsui Y,Furuhata T and Koyama F 2004 J. Appl. Phys. 96, 44 [9] Chang Y A, Kuo H C, Chang Y H and Wang S C 2005 Appl.Phys. Lett. 87 061908 [10] Wu D H, Niu Z C, Zhang S Y, Ni H Q, He Z H, Sun Z, Han Qand Wu R H 2006 J. Cryst. Growth 290 494 [11] Wu B P, Wu D H, Ni H Q, Huang S S, Zhan F, Xiong Y H, XuY Q and Niu Z C 2007 Chin. Phys. Lett. 24 3543 [12] Qu Y H, Jiang D S, Wu D H, Niu Z C and Sun Z 2005 Chin. Phys. Lett. 22 2088 [13] Tersoff J 1993 Appl. Phys. Lett. 62 693 [14] Liu Y W and Wang H 2006 J. Vac. Sci. Technol. B 24 1071 [15] Ribas P, Krishnamoorthy V and Park R M 1990 Appl.Phys. Lett. 57 1040 [16] Varshini Y P 1967 Physica 34 149 [17] Xu Z Y, Lu Z D, Yang X P, Yuan Z L, Zheng BZ, Xu J Z, GeW K, Wang Y, Wang J and Chang L L 1996 Phys. Rev. B 5411528 [18] Sun B Q, Jiang D S, Pan Z, Li L H and Wu R H 2000 Appl. Phys. Lett. 77 4148 [19] Akiyama H, Koshiba S, Someya T, Wada K, Noge H, NakamuraY, Inoshita T, Shimizu A and Sakaki H 1994 Phys. Rev. Lett. 72 924 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|