GENERAL |
|
|
|
|
Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity |
WANG Yi-Min, ZHOU Yan-Li, LIANG Lin-Mei, LI Cheng-Zu |
Department of Physics, National University of Defense Technology, Changsha 410073 |
|
Cite this article: |
WANG Yi-Min, ZHOU Yan-Li, LIANG Lin-Mei et al 2009 Chin. Phys. Lett. 26 100304 |
|
|
Abstract We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system.
|
Keywords:
03.67.Lx
42.50.Pp
85.25.Cp
|
|
Received: 01 April 2009
Published: 27 September 2009
|
|
|
|
|
|
[1] Makhlin Y, Sch\"{on G and Shnirman A 2001 Rev. Mod.Phys. 73 357 [2] Clarke J and Wilhelm F K 2008 Nature 453 1031 [3] You J Q, Tsai J S and Nori F 2002 Phys. Rev. Lett. 89 197902 [4] Lantz J, Wallquist M, Shumeiko V S and Wendin G 2004 Phys. Rev. B 70 140507(R) [5] Wallquist M, Lantz J, Shumeiko V S and Wendin G 2005 New J. Phys. 7 178 [6] You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510 [7] Plastina F and Falci G 2003 Phys. Rev. B 67224514 [8] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev.Lett. 94 100502 [9] Zhu S L, Wang Z D and Yang K 2003 Phys. Rev. A 68 034303 [10] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75064303 [11] Zheng A S, Liu J B, Xiang D, Liu C L and Yuan H 2007 Chin. Phys. Lett. 24 2489 [12] Ma C, Zhang S J, He J and Ye L 2008 Chin. Phys.Lett. 25 383 [13] Averin D V and Bruder C 2003 Phys. Rev. Lett. 91 057003 [14] Paik H et al 2005 IEEE Trans. Appl. Supercond. 15 8223 [15] Martinis J M, Nam S, Aumentado J and Lang K M 2003 Phy. Rev. B 67 094510 [16] Wen X D and YU Y 2008 Chin. Phys. Lett. 25694 [17] Makhlin Y, Sch\"{on G and Shnirman A 1999 Nature 398 305 [18] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786 [19] Feng Z B and Zhang X D 2007 Phys. Lett. A 37216 [20] Feng Z B and Zhang X D 2008 Physica E 40 878 [21] Xue Z Y, Wang Z D and Zhu S L 2008 Phys. Rev. A 77 024301 [22] Wu C F, Feng X L, Yi X X, Chen I M and Oh C H 2008 Phys. Rev. A 78 062321 [23] Duan L M and Guo G C 1997 Phys. Rev. Lett. 791953 [24] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902 [25] Lloyd S 1995 Phys. Rev. Lett. 75 346 [26] Al-Saidi W A and Stroud D 2002 Phys. Rev. B 65 224512 [27] Day P K, LeDuc H G, Mazin B, Vayonakis A and Zmuidzinas J2003 Nature 425 817 [28] Blais A, Huang R S, Wallraff A, Girvin S M and SchoelkopfR J 2004 Phys. Rev. A 69 062320 [29] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, UrbinaC, Esteve D and Devoret M H 2002 Science 296 886 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|