Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100201    DOI: 10.1088/0256-307X/26/10/100201
GENERAL |
Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping
ZHAO Yuan1, ZHANG Shun-Li1,3, LOU Sen-Yue2,3
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi'an 7100692Department of Physics, Shanghai Jiao Tong University, Shanghai 2002403Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
ZHAO Yuan, ZHANG Shun-Li, LOU Sen-Yue 2009 Chin. Phys. Lett. 26 100201
Download: PDF(207KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The approximate symmetry perturbation method is applied to the nonlinear damped wave equation. The approximate symmetry reduction equations of different orders are derived and the corresponding series reduction solutions are obtained.
Keywords: 02.30.Jr     
Received: 02 June 2009      Published: 27 September 2009
PACS:  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Yuan
ZHANG Shun-Li
LOU Sen-Yue
[1] Cole J D 1968 Perturbation Methods in AppliedMathematics (Walthma: Blaisdell Publishing Company)
[2] Van Dyke M 1975 Perturbation Methods in FluidMechanics (Stanford: CA: Parabolic Press)
[3] Nayfeh A H 2000 Perturbation Methods (New York:John Wiley and Sons)
[4] Baikov V A, Gazizov R K and Ibragimov N H 1988 Mat.Sb. 136 435
[5] Fushchich W I and Shtelen W M 1989 J. Phys. A: Math.Gen. 22 L887
[6] Pakdemirli M, Yurusoy M and Dolapci I T 2004 ActaAppl. Math. 80 243
[7] Wiltshire R 2006 J. Comput. Appl. Math. 197287
[8] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[9] Lou S Y 1990 Phys. Lett. A 151 133
[10] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) Bluman G W and Kumei S 1989 Symmetries and DifferentialEquations (New York: Springer) Ibragimov Kh N 1985 Transformation Groups Applied toMathematical Physics (Dordrecht: Reidel)
[11] Jiao X Y, Yao R X and Lou S Y 2008 J. Math. Phys. 49 093505
[12] Jiao X Y, Yao R X, Zhang S L and Lou S Y 2008 arXiv:0801.0856v2
[nlin.SI]
[13] Jia M, Wang J Y and Lou S Y 2009 Chin. Phys. Lett. 26 020201
[14] Jiao X Y, Yao R X and Lou S Y 2009 Chin. Phys.Lett. 26 040202
[15] Ahmad F, Kara A H, Bokhari A H and Zaman F D 2008 Appl. Math. Comput. 206 16
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 100201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 100201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 100201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 100201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 100201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 100201
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 100201
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 100201
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 100201
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 100201
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 100201
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 100201
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 100201
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 100201
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 100201
Viewed
Full text


Abstract