CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First-Principles Calculations of Elastic Properties of Cubic Ni2MnGa |
CHEN Dong1, XIAO Qi-Min2, ZHAO Ying-Lu3, YU Ben-Hai1, WANG Chun-Lei1, SHI De-Heng1 |
1College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 4640002Department of Foundation, The First Aeronautical College of Air Force, Xinyang 4640003College of Physics and Electronic Engineering, Ludong University, Yantai 264025 |
|
Cite this article: |
CHEN Dong, XIAO Qi-Min, ZHAO Ying-Lu et al 2009 Chin. Phys. Lett. 26 016201 |
|
|
Abstract Dependence of bulk modulus on both pressure and temperature, the elastic constants Cij and the pressure and temperature dependence of normalized volume V/V0 of cubic Ni2MnGa alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 800K and obtain the relationships between bulk modulus B and pressures at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the temperature dependences of the Debye temperature are also analysed. The calculated results are in agreement with the available experimental data and the previous theoretical results.
|
Keywords:
62.20.Dc
81.05.Bx
|
|
Received: 15 July 2008
Published: 24 December 2008
|
|
|
|
|
|
[1] Barman S R, Banik S and Chakrabarti A 2005 Phys.Rev. B 72 184410 [2] Worgull J, Petti E and Trivisonno J 1996 Phys. Rev.B 54 15695 [3] Chakrabarti A, Biswas C, Banik S, Dhaka R S, Shukla A Kand Barman S R 2005 Phys. Rev. B 72 073103 [4] Wu X D and Finlayson T R 2007 J. Phys.: Condens.Matter 19 026218 [5] Webster P J, Ziebeck R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295 [6] Wedel B, Suzuki M, Murakami Y, Wedel C, Suzuki T, Shindo Dand Itagaki K 1999 J. Alloys Compd. 290 137 [7] Blanco M A, Francisco E and Lua{\^na V 2004 Comput.Phys. Commun. 158 57 [8] Segall M D, Lindan Philip J D, Probert M J, Pickard C J,Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens.Matter 14 2717 [9] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [10] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [11] Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens.Matter 14 2717 [12] Murnaghan F D 1944 Proc. Natl. Acad. Sci. U.S.A. 30 244. [13] Maradudin A A, Montroll E W, Weiss G H and Ipatova I P1971 Theory of Lattice Dynamics in the Harmonic Approximation(New York: Academic) [14] Francisco E, Recio J M and Blanco M A 2001 Phys.Rev. B 63 094107 [15] Fl\'{orez M, Recio J M, Francisco E, Blanco M A andMart\'{\in Pend\'{as A 2002 Phys. Rev. B 66 144112 [16] Blanco M A, Pend\'{as A M, Francisco E, Recio J M andFranco R 1996 J. Mol. Struct.: Theochem. 368 245 [17] Fl\'{orez M, Recio J M, Francisco E, Blanco M A andMartin Pend\'{as A 2002 Phys. Rev. B 66 144112 [18] Francisco E, Recio J M, Blanco M A and Mart\'{\inPend\'{as A 1998 J. Phys. Chem. 102 1595 [19] Francisco E and Sanjurjo M A 2001 Phys. Rev. B 63 094107 [20] Ayuela A, Enkovaara J, Ullakko K and Nieminen R M 1999 J. Phys.: Condens. Matter 11 2017 [21] Zayak A T, Entel P and Hafner J 2003 J. Phys. IVFrance 112 985 [22] Anderson O L 1995 Equations of State of Solids forGeophysics and Ceramic Science (New York: Oxford University Press) [23] Stenger T E and Trivisonno J 1998 Phys. Rev. B 57 2735 [24] Vasil'ev A N, Kokorin V V, Savchenko Y I and Chernenko VA 1990 Sov. Phys. JETP 71 803 [25] Kreissl M, Neumann K U, Stephens T and Ziebeck K R A 2003 J. Phys. Condens. Matter 15 3831 [26] Pugaczowa-Michalska M 2007 J. Alloys Compd. 427 54 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|