Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions" /> Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions" /> Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions" />
Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 016104    DOI: 10.1088/0256-307X/26/1/016104
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
This paper has been withdrawn by the first author due to misconduct, see Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions
PENG Bei1, Horacio D. Espinosa2
1Center for Micro and Nano Electromechanical Systems, University of Electronic Science and Technology of China, Chengdu 6100542Micro and Nano Mechanics Laboratory, Northwestern University, Illinois 60208, USA
Cite this article:   
PENG Bei, Horacio D. Espinosa 2009 Chin. Phys. Lett. 26 016104
Download: PDF(413KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using MEMS technology and transmission electron microscopy we show experimentally multiwalled carbon nanotubes with a mean fracture strength of larger than 100GPa, which exceeds the earlier observations by a factor of approximately 3. These results are in excellent agreement with quantum-mechanical estimations. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging is used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200keV for 10, 100 and 1800s lead to improvements of the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. This procedure is a cost effective way of customizing the properties of multiwall nanotubes for many applications of interest ranging from nanocomposites to nanodevices.
Keywords: 61.46.Fg      62.20.M-      61.80.Fe     
Received: 26 September 2008      Published: 24 December 2008
PACS:  61.46.Fg (Nanotubes)  
  62.20.M- (Structural failure of materials)  
  61.80.Fe (Electron and positron radiation effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/016104       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/016104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Bei
Horacio D. Espinosa
[1] Krishnan A et al 1998 Phys. Rev. B 58 14013
[2] Haskins R W et al 2007 J. Chem. Phys. 127074708
[3] Li X D et al 2004 Nanotechnology 15 1416
[4] Ke C H and Espinosa H D 2004 Appl. Phys. Lett. 85 681
[5] Choi W B et al 1999 Appl. Phys. Lett. 75 3129
[6] Zhang S et al 2005 Phys. Rev. B 71 115403
[7] Yu M F et al 2000 Science 287 637
[8] Ruoff R S 2006 PNAS 103 6779
[9] Treacy M M J et al 1996 Nature 381 678
[10] Salvetat J P et al 1999 Appl. Phys. Lett. 69255
[11] Zhu Y et al 2005 Appl. Phys. Lett. 86 013506
[12] Zhu Y and Espinosa H D 2005 PNAS 102 14503
[13] Peng B et al 2008 Sensor Lett. 6 1
[14] Smith B W and Luzzi D E 2001 J. Appl. Phys. 90 3509
[15] Endo M, et al. 1997 J. Phys. Chem. Sol. 581707
[16] Qin L C 2006 Rep. Prog. Phys. 69 2761
[17] Ji D, et al. 2007 Chin. Phys. Lett. 24 165
[18] Huang J Y et al 2006 Nature 439 281.
Related articles from Frontiers Journals
[1] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 016104
[2] LI Yong, ZHENG Li-Ping, ZHANG Wei**, XU Zi-Jian**, REN Cui-Lan, HUAI Ping, ZHU Zhi-Yuan . Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 016104
[3] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 016104
[4] ZHANG Jing-Xiang, LI Hui, ZHANG Xue-Qing, LIEW Kim-Meow. Electric Conductivity of Phosphorus Nanowires[J]. Chin. Phys. Lett., 2009, 26(5): 016104
[5] XU Mei-Hua, QI Xiao-Si, ZHONG Wei, YE Xiao-Juan, DENG Yu, AUChaktong, JIN Chang-Qing, YANG Zai-Xing, DU You-Wei. Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle[J]. Chin. Phys. Lett., 2009, 26(11): 016104
[6] ZHANG Fu-Chun, , ZHANG Zhi-Yong, ZHANG Wei-Hu, , YAN Jun-Feng, YUN Jiang-Ni. First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes[J]. Chin. Phys. Lett., 2009, 26(1): 016104
[7] CHEN Yu-Li, LIU Bin, YIN Ya-Jun, HUANG Yong-Gang, HWUANG Keh-Chih. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology[J]. Chin. Phys. Lett., 2008, 25(7): 016104
[8] CAO Bing-Yang, HOU Quan-Wen. Thermal Conductivity of Carbon Nanotubes Embedded in Solids[J]. Chin. Phys. Lett., 2008, 25(4): 016104
[9] YUAN Peng-Fei, DING Ze-Jun, JU Xin. Theoretical Study on Structural and Elastic Properties of ZnO Nanotubes[J]. Chin. Phys. Lett., 2008, 25(3): 016104
[10] S. Eren San, Mustafa Okutan, Oguz Koysal, Yusuf Yerli. Carbon Nanoparticles in Nematic Liquid Crystals[J]. Chin. Phys. Lett., 2008, 25(1): 016104
[11] ZHANG Xue-Qing, LI Hui, LIEW Kim-Meow, LI Yun-Fang, SUN Feng-Wei. Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties[J]. Chin. Phys. Lett., 2007, 24(6): 016104
[12] JI Dong, GAO Xiang, KONG Xiang-Yang, LI Jia-Ming,. Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters[J]. Chin. Phys. Lett., 2007, 24(1): 016104
[13] ZHENG Li-Ping., XU Zi-Jian, WANG Cheng-Bin, ZHU Zhi-Yuan, ZHU De-Zhang, XIA Hui-Hao. Low Energy Ion Channelling in Single-Wall Nanotubes[J]. Chin. Phys. Lett., 2006, 23(8): 016104
[14] HAO Wei-Chang, PAN Feng, WANG Tian-Min, ZHOU Chun-Lan, WEI Long. Self-Assembled TiO2/PSS Multilayer Films Studied by Slow Positron Spectroscopy[J]. Chin. Phys. Lett., 2006, 23(1): 016104
[15] JIANG Xingliu, HAN Lijun*. Damage Patterns and Fractal Behavior of Polymeric Target Bombarded by Intense Pulsed Electron Beams[J]. Chin. Phys. Lett., 1992, 9(8): 016104
Viewed
Full text


Abstract