ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Rosen--Zener Transition in a Nonlinear System for Two-Component Bose--Einstein Condensates in Optical Lattices |
JIANG Xin, LIN Mai-Mai, LI Sheng-Chang, DUAN Wen-Shan |
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 |
|
Cite this article: |
JIANG Xin, LIN Mai-Mai, LI Sheng-Chang et al 2009 Chin. Phys. Lett. 26 013701 |
|
|
Abstract We study the Rosen-Zener transition (RZT) in a nonlinear system for two-component Bose--Einstein condensates in optical lattices. It is found that the percentage of the components could affect the quantum transition dramatically. For the component with large percentage it is equivalent that the effect of the nonlinearity is stronger, whereas for the component with small percentage the effect is weaker. We also find that the nonlinearity c11 can affect the quantum transition dramatically. This is similar to that reported from Ref.[14]. Compared with one-component systems, however, the effect of the nonlinearity is decreased due to the two components of the BECs in optical lattices. Furthermore, the effect of the coupling nonlinearity between two components c12 is studied. The component with large percentage is more affected by the nonlinearity than that with small-percentage component
|
Keywords:
37.10.Jk
37.10.Vz
03.75.Lm
|
|
Received: 02 September 2008
Published: 24 December 2008
|
|
PACS: |
37.10.Jk
|
(Atoms in optical lattices)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
|
|
|
[1] Andrews M R et al 1997 Phys. Rev. Lett. 79 553 Duan S Q et al 2005 Phys. Lett. A 346 315 Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73013619 [2] Huang G X et al 2003 Phys. Rev. A 67 023604 [3] Duan W S et al 2006 Chin. Phys. Lett. 23 2000 [4] Zhang X F et al 2008 Phys. Rev. A 77 023613 Li S C and Duan W S 2008 Eur. Phys. J. B 62 485 [5] Li L et al 2006 Phys. Rev. E 73 066610 [6] Huang G X et al 2001 Phys. Rev. A 64 013617 [7] Myatt C J et al 1997 Phys. Rev. Lett. 78 586 [8] Stamper-Kurn D M et al 1998 Phys. Rev. Lett. 80 2027 [9] Fu L B, Chen S G and Hu B 2004 Phys. Lett. A 323 460 [10] Wu B and Niu Q 2000 Phys. Rev. A 61 023402 Fu L B, Liu J and Chen S G 2002 Phys. Lett. A 298388 [11] Zobay O and Garrway B M 2000 Phys. Rev. A 61 033603 [12] Fu L B and Liu J 2006 Phys. Rev. A 74063614 [13] Liu J et.al. 2002 Phys. Rev. A 66023404 Fu L B and Chen S G 2005 Phys. Rev. E 71 016607 [14] Ye D F, Fu L B and Liu J 2008 Phys. Rev. A 77 013402 [15] Kyoseva E S et al 2006 Phys. Rev. A 73023420 [16] Olson R E 1972 Phys. Rev. A 6 1822 [17] Suominen K -A et al 1992 Phys. Rev. A 453060 [18] Bloch F 1946 Phys. Rev. 70 460 Bloch F et al 1946 Phys. Rev. 70 474 [19] Raghavan S et al 1999 Phys. Rev. A 59 620 [20] Albiez M et al 2005 Phys. Rev. Lett. 95010402 [21] Alexander T J et al 2006 Phys. Rev. Lett. 96 040401 [22] Mueller E J 2002 Phys. Rev. A 66 063603 [23] Liu J et al 2006 Phys. Rev. A 73 013601 [24] Anglin J R 2003 Phys. Rev. A 67 051601 Liu J et al 2005 Phys. Rev. A 72 063623 [25] Wang G F et al 2006 Phys. Rev. A 74 033414 [26] Liu J, Wu B and Niu Q 2003 Phys. Rev. Lett. 90 170404 [27] Choi D I and Niu Q 1999 Phys. Rev. Lett. 822022 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|