Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010503    DOI: 10.1088/0256-307X/26/1/010503
GENERAL |
Evolutions of Wave Patterns in Whitham-Broer-Kaup Equation
ZHANG Zheng-Di, BI Qin-Sheng
Faculty of Science, Jiangsu University, Zhenjiang 212013
Cite this article:   
ZHANG Zheng-Di, BI Qin-Sheng 2009 Chin. Phys. Lett. 26 010503
Download: PDF(278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Upon investigation of the parameter influence on the structure of WBK equation, transition boundaries are derived. All possible bounded waves as well as the existence conditions are obtained. The evolution of waves with variation of the parameters is discussed in detail, which reveals the bifurcation mechanism between different wave patterns.

Keywords: 05.45.Yv      05.45.-a     
Received: 08 June 2008      Published: 24 December 2008
PACS:  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zheng-Di
BI Qin-Sheng
[1] Yusufo\u{glu E and Bekir A 2008 Chaos, SolitonsFractals 37 842
[2] Chen J and Liu H 2008 Chin. Phys. Lett. 251168
[3] Odibat Z M 2008 Phys.Lett. A 372 1219
[4] Cherniha R 2007 J. Math. Anal. Appl. 326 783
[5] Mesloub S 2008 Nonl. Anal.: Theo. Meth. Appl. 68 2594
[6] Wazwaz A M 2008 Commun. Nonlin. Sci. Numer. Simul. 13 889
[7] Khuri S A 2008 Chaos, Solitons Fractals 361181
[8] Liu Y and Li Z 2003 Chin. Phys. Lett. 20 317
[9] Yan Z 2003 Chaos, Solitons and Fractals 15 575
[10] Helal M A and Mehanna M S 2007 Appl. Math.Comput. 190 599
[11] Fan E and Zhang Q 1998 Phys. Lett. A 246403
[12] Bi Q and Zhang Z 2008 Phys. Rev. E 77036607.
[13] Bi Q 2005 Phys. Lett. A 344 361
[14] Bi Q 2006 Phys. Lett. A 352 227
[15] Zhang Z and Bi Q 2005 Chaos, Solitons Fractals 23 1185
[16] Zhang Z, Bi Q and Wen J 2005 Chaos, SolitonsFractals 24 631
[17] Zhang L and Li J 2003 Chaos, Solitons and Fractals 17 941
[18] Yomba E and Peng Y 2006 Chaos, Solitons Fractals 28 650
[19] Xie F and Yan Z 2001 Phys. Lett. A 285 76
[20] Xu G and Li Z 2005 Chaos, Solitons Fractals 24 549
[21] Rafei M and Daniali H 2007 Comput. Math. Appl. 54 1079
[22] El-Sayed S M and Kaya D 2005 Appl. Math. Comput. 167 1339
[23] Wang Z and Tang S 2007 J. Guilin UniversityElectron. Tech. 27 123
[24] Cao J and Deng X 2006 J. Kunming University ofScience and Technology 31 121
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[7] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[8] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[9] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[10] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[11] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[12] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[13] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[14] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[15] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010503
Viewed
Full text


Abstract