Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010201    DOI: 10.1088/0256-307X/26/1/010201
GENERAL |
Full Poncelet Theorem in Minkowski dS and AdS Spaces
WANG Yao-Xiong1, FAN Heng2, SHI Kang-Jie1, WANG Chun1, ZHANG Kai1, ZENG Yu1
1Institute of Modern Physics, Northwest University, Xi'an 7100692Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
WANG Yao-Xiong, FAN Heng, SHI Kang-Jie et al  2009 Chin. Phys. Lett. 26 010201
Download: PDF(270KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the reflection of a straight line or a billiard on a plane in an n-dimensional Minkowski space. It is found that the reflection law coincides with that defined with respect to confocal quadratic surfaces in projective geometry. We then establish the full Poncelet theorem which holds in projective geometry in n-dimensional Minkowski space and in their quadratic surfaces including de Sitter and AdS spaces.

Keywords: 02.40.Dr      02.30.Ik     
Received: 08 October 2008      Published: 24 December 2008
PACS:  02.40.Dr (Euclidean and projective geometries)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yao-Xiong
FAN Heng
SHI Kang-Jie
WANG Chun
ZHANG Kai
ZENG Yu
[1] Poncelet J V 1866 Traite des ProprieteProjectives des Figures (Paris: Gauthier-Villars) p 311 Cayley A 1858 Quart. J. Pure Appl. Math. 2 31
[2] Chang S J and Friedberg R 1988 J. Math. Phys. 29 1537 and references therein
[3] Chang S J, Crespi B and Shi K J 1993 J. Math. Phys. 34 2242
[4] Dragovic V and Radnovic M 2004 J. Phys. A 37 1269 Abenda S and Fedorov Y 2006 Lett. Math. Phys. 76 111
[5] Chang S J and Shi K J 1989 J. Math. Phys. 30798
[6] Arnold V 1984 Mathematical Methods of ClassicalMechanics (New York: Springer) p 264
[7] Guo H Y, Huang C G, Xu Z and Zhou B 2005 Chin. Phys.Lett. 22 2477
[8] Chang Z, Chen S X and Huang C G 2005 Chin. Phys.Lett. 22 791
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010201
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 010201
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010201
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 010201
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010201
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010201
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 010201
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 010201
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 010201
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 010201
[14] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 010201
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 010201
Viewed
Full text


Abstract