Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2714-2717    DOI:
Original Articles |
A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram
LIU Dang-Ting, TIAN Ye, REN Yu-Feng, YU Hong-Wei, ZHANG Li-Hua,YANG
Qian-Sheng, CHEN Geng-Hua
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Dang-Ting, TIAN Ye, REN Yu-Feng et al  2008 Chin. Phys. Lett. 25 2714-2717
Download: PDF(144KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new filter scheme for magnetocardiogram (MCG) signal processing based on the quasi-periodic characteristic of the signals. The key points of this scheme are to determine the exact numbers of data points in each cardiac cycle by using electrocardiogram (ECG) data acquired simultaneously with the MCG signal and to normalize the MCG data sequence in each cycle into an identical length. Compared with conventional filters, the scheme has the advantage of more powerful noise suppression with less signal distortion. The desire for having high quality output signals from raw MCG data acquired in a simple shielded room or even in unshielded environment may be realized with the scheme.
Keywords: 87.85.Ng      85.25.Dq     
Received: 13 November 2007      Published: 26 June 2008
PACS:  87.85.Ng (Biological signal processing)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02714
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Dang-Ting
TIAN Ye
REN Yu-Feng
YU Hong-Wei
ZHANG Li-Hua
YANGQian-Sheng
CHEN Geng-Hua
[1] Drung D 1995 IEEE Trans. Appl. Supercond. 52112
[2] Vrba J 1997 Proc. 19th Annual Int. Conf. IEEE-EMBS(Chicago, IL. USA) p 1240
[3] Wakai R T, Wang M and Martin C B 1994 Am. J. Obstet.Gynecol. 170 770
[4] Li Z, Chen G H, Zhang L H, Yang Q S and Feng J 2005 Chin. Phys. 14 1095
[5] Meyer Y 1993 Wavelet: Algorithms and Applications(Philadelphia: SIAM)
[6] Chui Charles K 1992 Wavelet Analysis and ItsApplication (New York: Academic)
[7] Li Z, Chen G H, Zhang L H, Yang Q S and Feng J 2006 Chin. Phys. 15 0310
[8] Zhu X M, Tian Y, Zhao S P, Chen G H and Yang Q S 2005 Supercond. Sci. Technol. 18 1054
[9] Zhu X M, Ren Y F, Yu H W, Zhao S P, Chen G H, Zhang L Hand Yang Q S 2006 Chin. Phys. 15 0100
Related articles from Frontiers Journals
[1] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 2714-2717
[2] ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming, WANG Yong-Liang, KONG Xiang-Yan, XIE Xiao-Ming** . A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting[J]. Chin. Phys. Lett., 2011, 28(3): 2714-2717
[3] ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan** . Manipulating Quantum State in Superconducting Dressed-State Systems[J]. Chin. Phys. Lett., 2011, 28(12): 2714-2717
[4] Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer[J]. Chin. Phys. Lett., 2010, 27(8): 2714-2717
[5] DONG Hui, , ZHANG Yi, KRAUSE Hans-Joachim, XIE Xiao-Ming. Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection[J]. Chin. Phys. Lett., 2010, 27(8): 2714-2717
[6] ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao,. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(4): 2714-2717
[7] MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2008, 25(2): 2714-2717
[8] LI Bin-Bin, SHEN Hong-Lie, ZHANG Rong, XIU Xiang-Qiang, XIE Zhi. Structural and Magnetic Properties of Codoped ZnO based Diluted Magnetic Semiconductors[J]. Chin. Phys. Lett., 2007, 24(12): 2714-2717
[9] LI Zhuo, ZHU Xue-Min, ZHANG Li-Hua, HUANG Xu-Guang, REN Yu-Feng, CHEN Geng-Hua, YANG Qian-Sheng, FENG Ji. An Economical Magnetocardiogram System Based on High-Tc SQUIDs[J]. Chin. Phys. Lett., 2006, 23(8): 2714-2717
[10] ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED[J]. Chin. Phys. Lett., 2006, 23(12): 2714-2717
[11] QIN Zhi-Jie, HU Dong-Sheng, XIONG Shi-Jie. Effects of Induced Flux on Andreev Levels in a Quantum Point Contact Embedded in Superconducting Ring[J]. Chin. Phys. Lett., 2004, 21(5): 2714-2717
[12] PAN Hai-Zhong, KUANG Le-Man. Thermal Entanglement in Superconducting Quantum-Interference-Device Qubits Coupled to Cavity Field[J]. Chin. Phys. Lett., 2004, 21(3): 2714-2717
[13] JIA Ya, SUN Wen-Rong, LI Jia-Rong. A Stochastic Theory of dc Superconducting Quantum Interference Device Responsitivity in the Presence of Thermal Fluctuations [J]. Chin. Phys. Lett., 2002, 19(6): 2714-2717
[14] CHEN Geng-Hua, WANG Jing, ZHAO Shi-Ping, HAN Bing, XU Feng-Zhi, YANG Qian-Sheng . Analysis of Step Etching on SrTiO3 Substrates for the Step-Edge YBCO Josephson Junctions [J]. Chin. Phys. Lett., 2001, 18(1): 2714-2717
[15] HAN Bing, CHEN Geng-Hua, ZHANG Li-Hua, ZHAO Shi-Ping, YANG Qian-Sheng, YAN Shao-Lin, LU Rong-Tao. TI2Ba2CaCu2Ox Bicrystal Junction DC-SQUID Magnetometers Operating in Unshielded Environment[J]. Chin. Phys. Lett., 2000, 17(11): 2714-2717
Viewed
Full text


Abstract