Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2546-2549    DOI:
Original Articles |
Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid
LI Fang, YIN Xie-Yuan, YIN Xie-Zhen
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
LI Fang, YIN Xie-Yuan, YIN Xie-Zhen 2008 Chin. Phys. Lett. 25 2546-2549
Download: PDF(165KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The wave motion on the charged surface of a viscous Newtonian liquid is solved as an initial-value problem. Both the leaky dielectric and perfect dielectric cases are considered. The amplitude of wave is assumed to be small. The electric field induced by surface charge is shown to have a generally destabilizing effect on surface wave. The neutral stability curve is drawn in the (G, Ne) plane (G: the gravitational bond number; Ne: the electrical Bond number). The Ohnesorge number, Taylor--Melcher number and permittivity ratio have little influence on the neutral stability curve. It is testified that the classical normal mode method cannot predict wave behaviour at small times.
Keywords: 47.35.-i      47.20.Ma     
Received: 10 March 2008      Published: 26 June 2008
PACS:  47.35.-i (Hydrodynamic waves)  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02546
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Fang
YIN Xie-Yuan
YIN Xie-Zhen
Related articles from Frontiers Journals
[1] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 2546-2549
[2] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 2546-2549
[3] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 2546-2549
[4] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 2546-2549
[5] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 2546-2549
[6] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 2546-2549
[7] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 2546-2549
[8] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 2546-2549
[9] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 2546-2549
[10] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 2546-2549
[11] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 2546-2549
[12] FAN Zheng-Feng, LUO Ji-Sheng, YE Wen-Hua. Compressible Rayleigh--Taylor Instability with Preheat in Inertial Confinement Fusion[J]. Chin. Phys. Lett., 2007, 24(8): 2546-2549
[13] WANG Qi, ZHANG Hua, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographic Bottom[J]. Chin. Phys. Lett., 2007, 24(8): 2546-2549
[14] BAI Jing-Song, LI Ping, TAN Duo-Wang. Simulations of the Instability Experiments in Stratified Cylindrical Shells[J]. Chin. Phys. Lett., 2006, 23(7): 2546-2549
[15] LIU Rong, LIU Qiu-Sheng. Vapour Recoil Effect on a Vapour--Liquid System with a Deformable Interface[J]. Chin. Phys. Lett., 2006, 23(4): 2546-2549
Viewed
Full text


Abstract