Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2531-2534    DOI:
Original Articles |
Design of Photonic Bandgap Fibre with Novel Air-Hole Structure
LI Jing, ZHANG Wei-Gang, DU Jiang-Bing, WANG Zhi, LIU Yan-Ge, DONG Xiao-Yi
Key Laboratory of Opto-Electronic Information and Technology (Ministry of Education), and Institute of Modern Optics, Nankai University, Tianjin 300071
Cite this article:   
LI Jing, ZHANG Wei-Gang, DU Jiang-Bing et al  2008 Chin. Phys. Lett. 25 2531-2534
Download: PDF(990KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge, and is realized by making use of the hydrofluoric acid's corrosive properties. The fibre corrosion can be accurately controlled, thus opening us the gate for the design and fabrication of new PBGFs with more complex and more efficient cladding structures. Numerical results and actual simulations indicate that PBGFs built with this cladding structure have improved bandgap properties and guiding bands as wide as 500nm have been theoretically reached. Using the same method, we have also been able to design two other types of PBGFs with improved cladding structure.
Keywords: 42.81.Qb      42.70.Qs     
Received: 19 January 2008      Published: 26 June 2008
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02531
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jing
ZHANG Wei-Gang
DU Jiang-Bing
WANG Zhi
LIU Yan-Ge
DONG Xiao-Yi
[1] Cregan R F, Managan B J, Knight J C, Birks T A, Russell PS J, Roberts P J, and Allen D 1999 Science 285 1537
[2] Broeng J, Barkou S E, S$\phi$ndergaard T, and Bjarklev A2000 Opt. Lett. 25 96
[3] Knight J C, Broeng J, Birks T A, and Russell P S J 1998 Science 282 1476 Broeng J, Barkou S E, Bjarklev A, Knight J C, Birks T A andRussell P S J 1998 Opt. Commun. 156 240
[4] Couny F, Benabid F and Light P S 2006 Opt. Lett. 31 3574
[5] Wang J Y, Jiang C, Hu W S and Gao M Y 2006 Opt.Fiber Technol. 12 265
[6] Murao T, Saitoh K and Florous N J 2007 Opt.Express 15 4268
[7] Yan M and Shum P 2005 Opt. Lett. 30 1920
[8] Li Z Y and Lin L L 2003 Phys. Rev. E 67 1
[9] Saitoh K and Koshiba M 2002 IEEE J. QuantumElectron 38 927 Saitoh K and Koshiba M 2003 Opt. Express 113100
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 2531-2534
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 2531-2534
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 2531-2534
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 2531-2534
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 2531-2534
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 2531-2534
[7] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 2531-2534
[8] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 2531-2534
[9] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 2531-2534
[10] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 2531-2534
[11] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 2531-2534
[12] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 2531-2534
[13] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 2531-2534
[14] JIANG Bin, ZHOU Wen-Jun, CHEN Wei, LIU An-Jin, ZHENG Wan-Hua, ** . Improved Plane-Wave Expansion Method for Band Structure Calculation of Metal Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(3): 2531-2534
[15] HUANG Xian-Shan, LIU Hai-Lian** . Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir[J]. Chin. Phys. Lett., 2011, 28(12): 2531-2534
Viewed
Full text


Abstract