Original Articles |
|
|
|
|
Theoretical Study of Interesting Fine-Structure Splittings for 23P0, 1, 2 States along Helium Isoelectronic Sequence |
QING Bo1, CHEN Shao-Hao1, GAO Xiang2, LI Jia-Ming1,2 |
1The Key Laboratory of Atomic and Molecular Nanosciences of the Ministry of Education, Department of Physics, Tsinghua University, Beijing 1000842Department of Physics, Shanghai Key Laboratory for Laser Fabrication and Material Science, Shanghai Jiaotong University, Shanghai 200030 |
|
Cite this article: |
QING Bo, CHEN Shao-Hao, GAO Xiang et al 2008 Chin. Phys. Lett. 25 2448-2451 |
|
|
Abstract Using the multi-configuration Dirac--Fock method including the Breit interactions and QED corrections, we calculate the fine-structure energy levels of the 23P0, 1, 2 states along the helium isoelectronic sequence with atomic number up to Z=36, where LS-coupling is appropriate. Our calculation results agree with the experimental results within about 1%. We elucidate the mechanism of the interesting fine-structure splittings for the 23P0, 1, 2 states along the helium isoelectronic sequence, i.e. the competitions between the spin--orbit interactions and the Breit interactions which represent the relativistic retardation effect of electromagnetic interactions.
|
Keywords:
31.15.Ar
31.25.Jf
31.30.Jv
32.10.Fn
|
|
Received: 22 January 2008
Published: 26 June 2008
|
|
|
|
|
|
[1] Accad Y et al 1971 Phys. Rev. A 4 516 [2] Drake G W F 1988 Can. J. Phys. 66 586 [3] Zhang T et al 1996 Phys. Rev. Lett. 77 1715 [4] Chen M H et al 1993 Phys. Rev. A 47 3692 [5] Johnson W R and Sapirstein J 1992 Phys. Rev. A 46 2197 [6] Plante D R et al 1994 Phys. Rev. A 49 3519 [7] Grant I P1970 Adv. Phys. 19 747 [8] Desclaux J P 1975 Comput. Phys. Commun. 9 31 [9] Hata J and Grant I P 1983 J. Phys. B 16 507 Hata J and Grant I P 16 523 Hata J and Grant I P 16 L369 Hata J and Grant I P 1984 J. Phys. B 17 931 [10] Gorceix O et al 1987 J. Phys. B 20 639 [11] Parpia F A et al 1996 Comput. Phys. Commun. 94 249 [12] Cowan R D 1981 The Theory of Atomic Structure andSpectra, (Berkeley and Los Angeles: University of California Press)chap 12 p 339 [13] Mann J B and Johnson W R 1971 Phys. Rev. A 441 [14] Grant I P and McKenzie B J 1980 J. Phys. B 13 2671 [15] Grant I P 2006 Relativistic Quantum Theory of Atomsand Molecules, (New York: Springer) sections 4.9 and 10.11 [16] Pastor P C et al 2004 Phys. Rev. Lett. 92023001 [17] Riis E et al 1994 Phys. Rev. A 49 207 [18] Scholl T J et al 1993 Phys. Rev. Lett. 712188 [19] Dinneen T P et al 1991 Phys. Rev. Lett. 662859 [20] Edl\'en B, L\"ofstrand B 1970 J. Phys. B 31380 [21] Myers E G, Thompson J K, Margolis H S, Silver J D andTarbutt M R 2000 Hyperfine Interactions 127 323 [22] Peacock N J et al 1984 Physica Scripta T8 10 [23] Klein H A et al 1985 J. Phys. B 18 1483 [24] Kukla K W et al 1995 Phys. Rev. A 51 1906 [25] Martin S et al 1990 Phys. Rev. A 42 6570 [26] NIST Atomic Spectra Database Levels Form(http://physics.nist.gov/PhysRefData/ASD/levels form.html) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|