Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2413-2416    DOI:
Original Articles |
Conserved Quantities and Conformal Mechanico-Electrical Systems
FU Jing-Li1, WANG Xian-Jun2, XIE Feng-Ping1
1Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 3100182Department of Physics, Henan Institute of Education, Zhengzhou 450014
Cite this article:   
FU Jing-Li, WANG Xian-Jun, XIE Feng-Ping 2008 Chin. Phys. Lett. 25 2413-2416
Download: PDF(154KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The conformal mechanico-electrical systems are presented by infinitesimal point transformations of time and generalized coordinates. The necessary and sufficient conditions that the conformal mechanico-electrical systems possess Lie symmetry are given. The Noether conserved quantities of the conformal mechanico-electrical systems are obtained from Lie symmetries.
Keywords: 11.30.-j      11.30.Na      02.20.Qj     
Received: 30 January 2008      Published: 26 June 2008
PACS:  11.30.-j (Symmetry and conservation laws)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
  02.20.Qj  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02413
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Jing-Li
WANG Xian-Jun
XIE Feng-Ping
[1] Olver P 1993 Applications of Lie Groups to DifferentialEquations (New York: Springer)
[2] Ovisiannikov L V 1982 Group Analysis of Difference Equations(New York: Academic)
[3] Ibragimov N H 1985 Transformation Groups Applied toMathematical Physics (Boston: Reidel)
[4] Bluman G W and Kumei S 1989 Symmetries of DifferentialEquations (Berlin: Springer)
[5] Hydon P 1999 Symmetry Methods for Ordinary DifferentialEquations (Cambridge: Cambridge University Press)
[6] Mei F X 1999 Applications of Lie Group and Lie algebra toConstraint Mechanical Systems (Beijing: Science) (in Chinese)
[7] Noether A E 1918 Nachr, Akad. Wiss. Gottingen Math.Phys. KI I$\!$I 235
[8] Lutzky M 1979 Phys. Lett. A 72 86
[9] Lutzky M 1995 J. Phys. A 28 637
[10] Mei F X 2000 J. Beijing Institute of Technology 9 120
[11] Mei F X 2001 Chin. Phys. 10 177
[12] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[13] Zhang Y and Mei F X 2003 Chin. Phys. 12 1058
[14] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. 15 470
[15] Fang J H,Liao Y P, Ding N and Wang P 2006 Chin. Phys. 15 2792
[16] Zhang H B, Chen L Q, Gu S L and Liu C Z 2007 Chin. Phys. 16 582
[17] Liu R W,Zhang H B and Chen L Q 2006 Chin. Phys. 15 249
[18] Zheng S W, Xie J F and Zhang Q H 2007 Chin. Phys. Lett. 24 2164
[19] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys. Lett. 24 2773
[20] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
[21] Galiullin A S et al 1997 Analytical Dynamics of Helmholtz,Birkhoff and Nambu Systems (Moscow: UFN) p 183 (in Russian)
[22] McLachlan R and Perlmutter M 2001 J. Geom. Phys. 39 276
[23] Liu C, Mei F X and Guo Y X 2008 Chin. Phys. (in press)
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2413-2416
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 2413-2416
[3] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 2413-2416
[4] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 2413-2416
[5] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2413-2416
[6] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 2413-2416
[7] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 2413-2416
[8] KE San-Min, **, LI Xin-Ying, WANG Chun, YUE Rui-Hong . Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with 2n Grading[J]. Chin. Phys. Lett., 2011, 28(10): 2413-2416
[9] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 2413-2416
[10] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 2413-2416
[11] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 2413-2416
[12] LI Yan-Min. Lie Symmetries, Perturbation to Symmetries and Adiabatic Invariants of a Generalized Birkhoff System[J]. Chin. Phys. Lett., 2010, 27(1): 2413-2416
[13] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 2413-2416
[14] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems[J]. Chin. Phys. Lett., 2009, 26(3): 2413-2416
[15] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 2413-2416
Viewed
Full text


Abstract