Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2403-2406    DOI:
Original Articles |
Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions
HE Jin-Chun1, CHEN Zong-Yun2, YAN Tian3, HUANG Nian-Ning3
1Department of Mathematics, Huazhong University of Science and Technology, Wuhan 4300742Department of Physics, Huazhong University of Science and Technology, Wuhan 4300743Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
HE Jin-Chun, CHEN Zong-Yun, YAN Tian et al  2008 Chin. Phys. Lett. 25 2403-2406
Download: PDF(107KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract After a transformation, the inverse scattering transform for the derivative nonlinear Schrödinger (DNLS) equation is developed in terms of squared spectral parameter. Following this approach, we obtain the orthogonality and completeness relations of free Jost solutions, which is impossibly constructed with usual spectral parameter in the previous works. With the help these relations, the Zakharov--Shabat equations as well as Marchenko equations of IST are derived in the standard way.
Keywords: 05.45.Yv      52.35.Bj      42.81.Dp     
Received: 06 January 2008      Published: 26 June 2008
PACS:  05.45.Yv (Solitons)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Jin-Chun
CHEN Zong-Yun
YAN Tian
HUANG Nian-Ning
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2403-2406
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 2403-2406
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 2403-2406
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2403-2406
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2403-2406
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 2403-2406
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 2403-2406
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2403-2406
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2403-2406
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2403-2406
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2403-2406
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 2403-2406
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 2403-2406
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 2403-2406
[15] ZHANG Xin-Ben, ZHU Xian, CHEN Xiang, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan** . Enhanced Visible Light Generation from 1µm Femtosecond Pulses within High-Δ Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2011, 28(5): 2403-2406
Viewed
Full text


Abstract