Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2389-2391    DOI:
Original Articles |
Strange Nonchaotic Attractors in a Time-Delay System
SUN Jin-Tu, ZHANG Yan, WANG Ying-Hai
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
SUN Jin-Tu, ZHANG Yan, WANG Ying-Hai 2008 Chin. Phys. Lett. 25 2389-2391
Download: PDF(148KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A nonchaotic attractor is observed in an infinite-dimensional system which is related to optical bistability and described by a nonlinear time-delay differential equation. The observed nonchaotic attractor is characterized by the strange trajectory of attractor but with negative value for the largest Lyapunov exponent, as well as the Fourier power spectra.
Keywords: 05.40.-a      05.45.-a     
Received: 10 March 2008      Published: 26 June 2008
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02389
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Jin-Tu
ZHANG Yan
WANG Ying-Hai
[1] Grebogi C et al 1984 Physica D 13 261
[2]{Bondeson Bondeson A, Ott E and Antonsen T M 1985 Phys. Rev. Lett. 55 2103
[3] Romeiras F J and Ott E 1987 Phys. Rev. A 354404
[4] Heagy J and Ditto W L 1991 J. Nonlinear Sci. 1423
[5] Shuai J W and Wong K W 1999 Phys. Rev. E 595338
[6] Neumann E and Pikovsky A 2001 Phys. Rev. E 64 058201-1
[7] Yalcinkaya T and Lai Y C 1996 Phys. Rev. Lett. 77 5039
[8]Wang X G et al 2004 Phys. Rev. Lett. 92 074102
[9]Ding M, Grebogi C and Ott E 1989 Phys. Rev. A 39 2593 Ding M and Scott Relso J A 1994 Int. J. BifurcationChaos Appl. Sci. Eng. 4 553
[10]Kapitaniak T and Wojewoda J 1993 Attractors ofQuasiperiodically Forced Systems (Singapore: World Scientific)
[11]Heagy J F and Hammel S M 1994 Physica D 70140
[12]Feudal U, Kurths J and Pikovsky A S 1995 Physica D 88 176
[13]Venkatesan A and Lakshmanan M 1997 Phys. Rev. E 55 5140; Venkatesan A and Lakshmanan M 1998 Phys. Rev. E 58 3008
[14]Kapitaniak T and Chua L O 1997 Int. J. BifurcationChaos Appl. Sci. Eng. 7 423
[15]Nishikawa T and Kaneko K 1996 Phys. Rev. E 546114
[16] Nie L R and Mei D C 2007 Chin. Phys. Lett. 243074
[17] Feng C F, Zhang Y and Wang Y H 2007 Chin. Phys.Lett. 24 50
[18] Li H J et al 2007 Chin. Phys. Lett. 24 2394
[19] Wang J Y et al 2006 Chin. Phys. Lett. 23 1398
[20] Zhao H et al 1998 Phys. Rev. E 58 4383
[21] Li J N and Hao B L 1989 Commun. Theor. Phys. 11 265
[22] Hale J K 1977 Theory of Functional DifferentialEquations, Applied Mathematical Science (Berlin: Springer)
[23] Pikovsky A S et al 1995 Phys. Rev. E 52 285Pikovsky A S and Feudel U 1994 J. Phys. A 27 5209
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2389-2391
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2389-2391
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2389-2391
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2389-2391
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 2389-2391
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2389-2391
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2389-2391
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2389-2391
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2389-2391
Viewed
Full text


Abstract