Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2335-2338    DOI:
Original Articles |
An Explicit Scheme for the KdV Equation
WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying
School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097
Cite this article:   
WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying 2008 Chin. Phys. Lett. 25 2335-2338
Download: PDF(222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new explicit scheme for the Korteweg--de Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky--Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
Keywords: 02.60.Cb      02.70.Bf      45.10.Na      45.20.Dh     
Received: 19 November 2007      Published: 26 June 2008
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02335
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hui-Ping
WANG Yu-Shun
HU Ying-Ying
[1] Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240
[2] Feng K and Qin M Z 1987 Lecture Notes inMathematics {vol. 1297 1
[3] Feng K, Wu H M, Qin M Z and Wang D L 1989 J.Comput. Math. 7(1) 71
[4] Hairer E, Lubich C and Wanner G 2002 GeometricNumerical Integration, Structure-Preserving Algorithms forOrdinary Differential Equations (Berlin: Springer)
[5] Zhao P F and Qin M Z 2000 J. Phys. A 33(18)3613
[6] Abe K and Inoue O 1980 J. Comput. Phys. 34(2) 202
[7] Huang M Y 1991 Math. Comput. 56 607
[8] Guo B Y 1985 Acta Math. Scientia 5 337
[9] Guo B Y 1988 Difference Method for PartialDifferential Equations (Beijing: Science Press) (in Chinese)
[10] Ascher U M and McLachlan R I 2004 Appl. Numer.Math. 48 255
[11] Ascher U M and McLachlan R I 2005 J. Sci. Comput. 25 83
[12] Taha T R and Ablowtitz M J 1984 J. Comput.Phys. 55 231
[13] Chertock A and Levy D 2001 J. Sci. Comput. 17 491
[14] Wang Y S, Wang B and Chen X 2007 Chin. Phys.Lett. 24(2) 312
[15] Bridge T J and Reich S 2001 Phys. Lett. A 284 184
[16] Yu D H and Tang H Z 2003 Numerical Solutions ofDifferential Equations (Beijing: Science Press)(in Chinese)
[17] Li S F and Vu-Quoc L 1995 SIAM J. Numer. Anal. 32 1839
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2335-2338
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2335-2338
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 2335-2338
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 2335-2338
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 2335-2338
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2335-2338
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 2335-2338
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 2335-2338
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 2335-2338
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 2335-2338
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 2335-2338
[12] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 2335-2338
[13] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 2335-2338
[14] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 2335-2338
[15] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 2335-2338
Viewed
Full text


Abstract