Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2217-2220    DOI:
Articles |
Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor
FAN Wei
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
FAN Wei 2008 Chin. Phys. Lett. 25 2217-2220
Download: PDF(358KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the electron--phonon mechanism, we explain the spatial anti-correlation between the energy-gap and the energy of phonon mode for cuprate superconductor found in tunnelling spectrum by STM measurements of Bi2212, which is the direct effect of an important relationship (or constraint) I=const, where I is superconducting parameters. By relaxing above constraint, we study the correlation of energy gap and phonon energy
when I has a distribution. We calculate a map of transition temperature in space constructing by phonon energy and the parameter of electron--phonon interaction, which is helpful for understanding of the relation.
Keywords: 74.20.Fg      74.25.Kc      74.62.-c     
Received: 22 October 2007      Published: 31 May 2008
PACS:  74.20.Fg (BCS theory and its development)  
  74.25.Kc (Phonons)  
  74.62.-c (Transition temperature variations, phase diagrams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02217
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Wei
[1] Fischer {\Oystein et al %, Kugler M, Maggio-Aprile Ivan,%Berthod C and Renner C2007 Rev. Mod. Phys. 79 353
[2] Pan S H et al %, O'Neal J P, Badzey R L, Chamon C, Ding H,%Engelbrecht J R, Wang Z, Eisaki H, Uchida S, Gupta A K,%Ng K W, Hudson E W, Lang K M and Davis J C2001 Nature 413 282
[3] Lee Jinho et al %, Fujita K, McElroy K, Slezak J A, Wang M, Aiura Y,%Bando H, Ishikado M, Masui T, Zhu J X, Balatsky A V, Eisaki H, Uchida S%and Davis J C2006 Nature 442 546
[4] Devereaux T P et al %, Cuk T, Shen Z X and Nagaosa N2004 Phys. Rev. Lett. 93 117004
[5] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[6] McMillan W L 1968 Phys. Rev. 167 331
[7] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[8] Scalapino D J, Schrieffer J R and Wilkins J W 1966 Phys. Rev. 148 263
[9] Holcomb M J 1996 Phys. Rev. B 54 6648
[10] Morel P, Anderson P W 1962 Phys. Rev. 125 1263
[11] Sandvik A W, Scalapino D J and Bicker N E 2004 Phys.Rev. B 69 094523
[12] Kostur V N, Mitrovi\'c B 1994 Phys. Rev. B 50 12774
[13] Lin H, Sahrakorpi S, Markiewicz R S and Bansil A 2006 Phys.Rev. Lett. 96 097001
Related articles from Frontiers Journals
[1] CAO Chao**, DAI Jian-Hui, ** . Electronic Structure of KFe2Se2 from First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(5): 2217-2220
[2] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 2217-2220
[3] FAN Wei, WANG Jiang-Long, ZOU Liang-Jian, ZENG Zhi. Non-Adiabatic Effects of Superconductor Silane under High Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 2217-2220
[4] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 2217-2220
[5] WANG Yue-Qin, YUAN Lan-Feng, YANG Jin-Long. Lattice Dynamics and Superconductivity of RuB2: A First-Principles Study[J]. Chin. Phys. Lett., 2008, 25(8): 2217-2220
[6] ZHAO Song-Rui, SHEN Jing-Qin, XU Zhu-An, Takeya H, Hirata K. Magnetic Pair-Breaking in Y1-xHoxNi2B2C ( x=0, 0.25, 0.5, 0.75) Single Crystals[J]. Chin. Phys. Lett., 2006, 23(4): 2217-2220
[7] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 2217-2220
[8] YIN Dao-Le, YANG Fan, QI Zhi, HAN Ru-Shan. Electron-Phonon Coupling in Anion Metallic Solids and Superconducting MgB2[J]. Chin. Phys. Lett., 2002, 19(8): 2217-2220
[9] LIU Zhen-Xing, JIN Chang-Qing, YOU Jiang-Yang, LI Shao-Chun, ZHU Jia-Lin, YU Ri-Cheng, LI Feng-Ying, WANG Ru-Ju, SU Shao-Kui . Enhanced MgB2 Superconductivity Under High Pressure[J]. Chin. Phys. Lett., 2002, 19(1): 2217-2220
[10] LUO Jian-Lin, ZHANG Jie, CHEN Zhao-Jia, BAI Hai-Yang, WANG Yu-Peng, MENG Ji-Bao, JIN Duo, REN Zhi-An, CHE Guang-Can, ZHAO Zhong-Xian. Low Temperature Specific Heat of Superconducting MgB2[J]. Chin. Phys. Lett., 2001, 18(6): 2217-2220
[11] CHEN Zhi-Qian, ZHENG Ren-Rong,. Statistic Ensemble Theory of Small Superconducting Grains[J]. Chin. Phys. Lett., 2001, 18(4): 2217-2220
[12] CHEN Ling, CHE Guang-Can, LI Hong, DONG Cheng, Zhou Fang, Huang Yu-Zhen, ZHAO Zhong-Xian. Superconductivity of Nd1.85Ce0.15CuO4-y by Electrochemical Oxidation[J]. Chin. Phys. Lett., 2000, 17(8): 2217-2220
[13] CHEN Zhi-Qian, ZHENG Ren-Rong,. Breakdown of Superconductivity in Small Metallic Grains[J]. Chin. Phys. Lett., 2000, 17(10): 2217-2220
[14] CHEN Xiao-jia, GONG Chang-de. Pressure-Induced Charge Transfer and Pressure Dependence of the Superconducting Transition Temperature in HgBa2CuO4+δ[J]. Chin. Phys. Lett., 1998, 15(9): 2217-2220
[15] SHI Da-ning. Van Hove Scenario in Two-Layer BCS Model[J]. Chin. Phys. Lett., 1996, 13(1): 2217-2220
Viewed
Full text


Abstract