Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 1980-1983    DOI:
Articles |
Non-Commutative Fock--Darwin System and Magnetic Field Limits
YU Xiao-Min1;LI Kang2
1Academic Administration, Hangzhou Dianzi University, Hangzhou 3100182Department of Physics, Hangzhou Normal University, Hangzhou 310036
Cite this article:   
YU Xiao-Min, LI Kang 2008 Chin. Phys. Lett. 25 1980-1983
Download: PDF(113KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Fock--Darwin system in noncommutative quantum mechanics is studied. By constructing Heisenberg algebra we obtain the levels on noncommutative space and noncommutative phase space, and give the corrections to the results in usual quantum mechanics. Moreover, to search the difference among the three spaces, the degeneracy is analysed by two ways, the value
of ω/ωc and certain algebra realization (SU(2)and SU(1,1)), and some interesting properties in the magnetic field limit are exhibited, such as totally different degeneracy and magic number distribution for the given frequency or mass of a system in strong magnetic field.
Keywords: 11.10.Nx      03.65.-w      02.40.Gh     
Received: 10 December 2007      Published: 31 May 2008
PACS:  11.10.Nx (Noncommutative field theory)  
  03.65.-w (Quantum mechanics)  
  02.40.Gh (Noncommutative geometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/01980
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Xiao-Min
LI Kang
[1] Seiberg N et al 1999 J. High Energy Phys. 0329909
[2] Connes A et al 1998 J. High Energy Phys. 0039802 Douglas M R et al 1998 J. High Energy Phys. 0089802 Douglas M R et al 2001 Rev. Mod. Phys. 73 977
[3] Ardalan F et al 1999 J. High Energy Phys. 0169902
[4]Curtright T et al 1998 Phys. Rev. D 58 25002 Mezincescu L hep-th/0007046
[5] Chu S C and Ho P M 1999 Nucl. Phys. B 550 151 Chu S C and Ho P M 2000 Nucl. Phys. B 568 447
[6] Schomerus V 1999 J. High Energy Phys. 030 9906
[7] Filk T 1996 Phys. Lett. B 376 53
[8] Castellani L 2000 Class. Quant. Grav. 17 3377
[9] Konechny A and Schwarz A 2002 Phys. Rept. 360353
[10]Dunne G et al 1990 Phys. Rev. D 41 661
[11] Demetrian M and Kochan D hep-th/0102050 Zhang J Z 2004 Phys. Lett. B 584 204
[12] Li K et al 2005 Mod. Phys. Lett. A 20 2165
[13] Nair V P 2001 Phys. Lett. B 505 249 Nair V P et al 2001 Phys. Lett. B 505 267
[14] Morariu B et al 2001 Nucl. Phys. B 610 531 Morariu B et al 2002 Nucl. Phys. B 634 326
[15]Chaichian M et al 2001 Phys. Rev. Lett. 862716 Chaichian M et al 2001 Nucl.Phys. B 611 383
[16]Li K and CHAMOUN N 2006 Chin. Phys. Lett. 231122
[17]Chaichian M et al 2002 Phys. Lett. B 527 149 Falomir H et al 2002 Phys. Rev. D 66 045018 Dayi O F and Jellal A 2002 J. Math. Phys. 434592
[18]Wang J H and Li K 2007 Chin. Phys. Lett. 24 5 Li K and Chamoun N 2007 Chin. Phys. Lett. 241183
[19]Mirza B and Zarei M 2004 Eur. Phys. J. C 32583
[20]Chambers R G 1960 Phys. Rev. Lett. 5 3
[21] Karabali D et al 2002 Nucl. Phys. B 627 565
[22]See, for examples, Dayi \"{O F and Jellal A 2001 Phys. Lett. A 287 349 Basu B and Ghosh S 2005 Phys. Lett. A 346 133 Susskind L hep-tp/0101029 Lee B H, Moon K and Rim C 2001 Phys. Rev. D 64085014
[23]Banerjee R 2002 Mod. Phys. Lett. A 17 631
[24]Ghosh S hep-th/0405177 Jellal A hep-th/0105303.
[25]Fock V 1928 Z. Phys. 47 446 Darwin C G 1930 Proc. Cambridge Phil. Soc. 2786 Dune G V et al 1990 Phys. Rev. D 41 661
[26]Landau L D 1930 Z. Phys. 64 629
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1980-1983
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1980-1983
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 1980-1983
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1980-1983
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1980-1983
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1980-1983
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1980-1983
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1980-1983
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1980-1983
[10] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 1980-1983
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 1980-1983
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1980-1983
[13] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 1980-1983
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1980-1983
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 1980-1983
Viewed
Full text


Abstract