Original Articles |
|
|
|
|
Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements |
WANG Qing-Bo1;XU Xiang-Fan1;TAO Qian1;WANG Hong-Tao2;XU Zhu-An1 |
1Department of Physics, Zhejiang University, Hangzhou 3100272Department of Physics and Information Science, Wenzhou University, Wenzhou 325027 |
|
Cite this article: |
WANG Qing-Bo, XU Xiang-Fan, TAO Qian et al 2008 Chin. Phys. Lett. 25 1857-1860 |
|
|
Abstract High quality Sr14-xCaxCu24O41 single-crystals are successfully grown by floating-zone technique, and the transport properties are studied. The temperature dependence of resistivity along the c-axis direction is semiconductor-like for x≤10 and it can be fitted by the thermal activation equation ρ=ρ0exp(Δ/kBT) with k_B being the Boltzmann constant and Δ the activation energy. A break in the slope of thermopower (S) versus the inverse temperature (1/T) corresponding to the formation of charge-density waves (CDW) is first observed for x≤6. The temperature dependence of thermopower becomes metallic for x≥8 while the resistivity is still semiconductor-like. We propose that the insulation behaviour of the resistivity in the Ca doping range 8≤ x≤11 could result from the localization of the charge carriers due to the disorder induced by Ca doping and a revised electronic phase diagram is derived based on our observations.
|
Keywords:
74.72.Jt
74.25.Fy
71.45.Lr
71.30.+h
|
|
Received: 25 February 2008
Published: 29 April 2008
|
|
|
|
|
|
[1] Uehara M, Nagata T, Akimitsu J et al 1996 J. Phys.Soc. Jpn. 65 2764 [2] Dagotto E, Riera J and Scalapino D 1992 Phys. Rev. B 45 5744 [3] Sigrist M, Rice T M and Zhang F C 1994 Phys. Rev. B 49 12058 [4] Tsunetsugu H, Troyer M and Rice T M 1994 Phys. Rev.B 49 16078 [5] N\"{ucker N, Merz M, Kuntscher C A et al 2000 Phys.Rev. B 62 14384 [6] Osafune T, Motoyama N, Eisaki H et al 1997 Phys. Rev.Lett. 78 1980 [7] Magishi K, Matsumoto S, Kitaoka Y et al 1998 Phys.Rev. B 57 11533 [8] Kataev V, Choi K -Y, Gr\"{uninger M et al 2001 Phys.Rev. B 64 104422 [9] Kato M, Chizawa H, Kioke Y et al 1994 Physica C 235-240 1327 [10] Kato M, Shiota K and Koike Y 1996 Physica C 258 284 [11] Kato M, Shiota K, Ikeda S et al 1996 Physica C 263 482. [12] Adachi T, Shiota K, Kato M et al 1998 Solid StateCommun. 105 639 [13] Vuleti\'{c T, Korin-Hamzi\'{c B, Tomi\'{c S et al 2003 Phys. Rev. Lett. 90 257002 [14] Noji T, Kakimoto K and Koike Y 1998 Jpn. J. Appl.Phys. 37 100 [15] Matsuda M and Katsumata K 1996 Phys. Rev. B 53 12201 [16] Gorshunov B, Haas P, R\~{o\~{om T et al 1998 Phys.Rev. B 66 060508R. [17] Gozar A, Blumberg G, Littlewood P B et al 2003 Phys.Rev. Lett. 91 087401 [18] Motoyama N, Eisaki H, Osafune T et al 1997 PhysicaC 282-287 1119 [19] Chaikin P M 1990 Organic Superconductivity edKresin V Z and Little W A (New York: Plenum) p 106 [20] Chen X Z, Shen J Q, Xu Y et al 2004 Physica B 352 280 [21] Anderson P W 1958 Phys. Rev. 109 1492 [22] Boebinger G S, Ando Y, Passner A et al 1996 Phys.Rev. Lett. 77 5417 [23] Zhao Y L, Xu Z A, Zhang X J et al 2002 Chin. Sci.Bull. 47 531 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|