Original Articles |
|
|
|
|
Au5Si2/Si Heterojunction Nanowires Formed by Combining SiO Evaporation with Vapour--Liquid--Solid Mechanism |
PAN Guo-Wei1;YING Guo-Liang2;YONG Ben-Shou1;WAN Yu-Ting1; ZENG Yue-Wu3;SU Zi-Xue1 |
1Department of Physics, Zhejiang University, Hangzhou 3100272Information Technology Center, Taizhou College, Linhai 317003Analysis and Measurement Center, Zhejiang University, Hangzhou 310027 |
|
Cite this article: |
PAN Guo-Wei, YING Guo-Liang, YONG Ben-Shou et al 2008 Chin. Phys. Lett. 25 1825-1828 |
|
|
Abstract Crystalline Au5Si2/Si heterojunction nanowires (Au5Si2/SiNWs) are obtained by thermal evaporating SiO powders on thick gold-coated silicon substrates in a low vacuum system. Structure analysis of the produced Au5Si2/Si heterojunctions is performed by employing a transmission electron microscope (TEM) and a selected area electric diffractometer. The chemical compositions are studied by a energy-dispersive x-ray spectroscope attached to the TEM. A two-step growth model is proposed to describe the formation of the Au5Si2/SiNWs. During the first step, crystalline SiNWs are formed via a growth mechanism combining the oxide-assisted growth process with the vapour-liquid-solid model at relatively high temperature. In the second step, the temperature decreases and one segment of the preformed SiNWs reacts with the remnant Au to form single crystalline Au5Si2 nanowires by a solid-liquid-solid process. The present work should be useful for the future synthesis and research of high-quality gold silicide nanowires and microelectronic devices based on the nanowires.
|
Keywords:
71.55.Cn
73.40.Lq
|
|
Received: 27 January 2008
Published: 29 April 2008
|
|
PACS: |
71.55.Cn
|
(Elemental semiconductors)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
|
|
|
[1] Gullis A G and Canham L T 1991 Nature 353 335 [2] Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66 [3] Wong W K, Meng F Y, Li Q, Au F C K, Bello I and Lee S T2002 Appl. Phys. Lett. 80 877 [4] Sha J, Niu J J, Ma X Y, Xu J, Zhang X B, Yang Q and Yang DR 2002 Adv. Mater. 14 1219 [5] Holmes J D, Johnston K P, Doty R C and Korgel B A 2000 Science 287 1471 [6] Westwater J, Gosain D P, Tomiya S, Usui S and Ruda H 1997 J. Vac. Sci. Technol. B 15 554 [7] Cui Y, Lauhon L J, Gudiksen M S, Wang J F and Lieber C M2001 Appl. Phys. Lett. 78 2214 [8] Yu D P, Bai Z G, Ding Y, Hang Q L, Zhang H Z, Wang J J,Zou Y H, Qian W, Xiong G C, Zhou H T and Feng S Q 1998 Appl.Phys. Lett. 72 3458 [9] Yu D P, Xing Y J, Hang Q L, Yan H F, Xu J, Xi Z H and FengS Q 2001 Physica E 9 305 [10] Kolb F M, Hofmeister H, Scholz R, Zacharias M, G\"{OseleU, Ma D D and Lee S T 2004 J. Electrochem. Soc. 151 G472 [11] Yao Y, Li F H and Lee S T 2005 Chem. Phys. Lett. 406 381 [12] Toyama N 1984 J. Appl. Phys. 55 4398 [13] Baumann F H and Schroter W 1991 Phys. Rev. B 43 6510 [14] Minori A, Takahito N and Kimihiko H 2002 J. Chem.Phys. 117 7960 [15] Rout B, Sundaravel B, Das A K, Ghose S K, Sekar K,Mahapatra D P and Dev B N 2000 J. Vac. Sci. Technol. B 181 847 [16] Wu Y, Wang J, Yang C, Lu W and Lieber C M 2004 Nature 430 61 [17] Paulose M, Varghese O K and Grimes C A 2003 J.Nanosci. Nanotechnol. 3 341 [18] Wong T C, Li C P, Zhang R Q and Lee S T 2004 Appl.Phys. Lett. 84 407 [19] Chang J F, Young T F, Yang Y L, Ueng H Y, Ueng H Y andChang T C 2004 Mater. Chem. Phys. 83 199 [20] Hannon J B, Kodambaka S, Ross F M and Tromp R M 2006 Nature 440 69 [21] Jongyoon Han, Jeon D and Kuk Y 1997 Surf. Sci. 376 237 [22] Green A K and Bauer E 1976 J. Appl. Phys. 471284 [23] Chang P H, Berman G and Shen C C 1988 J. Appl.Phys. 63 1473 [24] Li Q and Jiao Y 2005 Appl. Phys. Lett. 87261905 [25] Kern W 1970 RCA Rev. 31 187 [26] Hultman L, Robertsson A, Hentzell H T G, Engstrom I andPsaras P A 1987 J. Appl. Phys. 62 3647 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|