Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1764-1767    DOI:
Original Articles |
Reconnection Rate in Collisionless Magnetic Reconnection under Open Boundary Conditions
HUANG Jun1;MA Zhi-Wei2
1CAS Key Laboratory of Basic Plasma Physics, School of Science, University of Science and Technology of China, Hefei 2300262Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
HUANG Jun, MA Zhi-Wei 2008 Chin. Phys. Lett. 25 1764-1767
Download: PDF(668KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Collisionless magnetic reconnection is studied by using two-dimensional
Darwin particle-in-cell simulations with different types of open boundary conditions. The simulation results indicate that reconnection rates are strongly dependent on the imposed boundary conditions of the magnetic field Bx in the inward side. Under the zero-gradient Bx boundary condition, the reconnection rate quickly decreases after reaching its maximum and no steady-state is found. Under both electromagnetic and magnetosonic boundary conditions, the system can reach a quasi-steady state. However, the reconnection rate Er≈0.08 under the electromagnetic boundary condition
is weaker than Er≈0.13 under the magnetosonic boundary condition.
Keywords: 52.35.Vd      52.65.Rr     
Received: 23 February 2008      Published: 29 April 2008
PACS:  52.35.Vd (Magnetic reconnection)  
  52.65.Rr (Particle-in-cell method)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01764
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Jun
MA Zhi-Wei
[1]Vasyliunas V 1975 Rev. Geophys. 70 303
[2] Biskamp D 1997 Phys. Plasmas 4 5
[3] Birn J, Drake J, Shay M, Rogers B, Denton R, Hesse M, KuznetsovaM, Ma Z W, Bhattacharjee A and Otto A 2001 Geophys. Res. Lett. 106 3715
[4] Shay M, Drake J and Rogers B 1999 Geophys. Res. Lett. 26 2163
[5] Huba J and Rudakov L 2004 Phys. Rev. Lett. 93 175003
[6] Wang X G, Bhattacharjee A and Ma Z W 2001 Phys. Rev.Lett. 87 265003
[7] Fitzpatrick R D 2004 Phys. Plasmas 11 937
[8] Pritchett P 2001 J. Geophys. Res. 106 3783
[9] Hesse M, Birn J and Kuznetsova M 2001 J. Geophys.Res. 106 3721
[10] Fujimoto K 2006 Phys. Plasmass. 13 072904
[11] Daughton W, Scudder J and Karimabadi H 2006 Phys.Plasmas 13 072101
[12] Birdsall C and Langdon A 1985 (New York: McGraw-Hill)
[13] Swift D W 1986 J. Geophys. Res. 91 219
[14] Ding D Q, Lee L C and Swift D W 1992 J. Geophys.Res. 97 8453
[15] Cai H J and Lee L C 1997 Phys. Plasmas 4 509
[16] Harris E G 1962 Nuovo Cimento 23 15
Related articles from Frontiers Journals
[1] GUO Jun, YU Bin. Competition between Buneman and Langmuir Instabilities[J]. Chin. Phys. Lett., 2012, 29(3): 1764-1767
[2] GE Zhe-Yi, YIN Yan**, CHEN De-Peng, ZHUO Hong-Bin, MA Yan-Yun, SHAO Fu-Qiu. Stimulated Raman Backscattering Amplification Using Multiple Pump Pulses[J]. Chin. Phys. Lett., 2012, 29(1): 1764-1767
[3] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 1764-1767
[4] XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng . Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime[J]. Chin. Phys. Lett., 2011, 28(8): 1764-1767
[5] JI Yan-Ling, DUAN Tao, JIANG Gang, WU Wei-Dong, TANG Yong-Jian** . Effects of Laser Parameters on Fast Electron Generation in a Multihole Array Target[J]. Chin. Phys. Lett., 2011, 28(3): 1764-1767
[6] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 1764-1767
[7] WU Ming-Yu, WU Hong, LU Quan-Ming, XUE Bing-Sen. Effects of Perpendicular Thermal Velocities on the Transverse Instability in Electron Phase Space Holes[J]. Chin. Phys. Lett., 2010, 27(9): 1764-1767
[8] LIU Cheng-Sen, WANG De-Zhen, FAN Yu-Jia, ZHANG Nan, GUAN Li, YAO Yuan. Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation[J]. Chin. Phys. Lett., 2010, 27(7): 1764-1767
[9] JI Yan-Ling, JIANG Gang, WU Wei-Dong, ZHANG Ji-Cheng, TANG Yong-Jian. Enhancement of the Number of Fast Electrons Generated in a Laser Inverse Cone Interaction[J]. Chin. Phys. Lett., 2010, 27(3): 1764-1767
[10] GUO Jun. Particle Simulation of Electrostatic Waves Driven by an Electron Beam[J]. Chin. Phys. Lett., 2010, 27(2): 1764-1767
[11] WU Hai-Cheng, XIE Bai-Song, YU Ming-Young, . Electron Acceleration in the Bubble Regime with Dense-Plasma Wall Driven by an Ultraintense Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(10): 1764-1767
[12] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang, XU Liu-Rong, ZHAO Yan-Song. Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator[J]. Chin. Phys. Lett., 2009, 26(5): 1764-1767
[13] JIN Zhang-Ying, SHEN Bai-Fei, ZHANG Xiao-Mei, WANG Feng-Chao, WENMeng, JI Liang-Liang, XU Jian-Cai, WANG Wen-Peng. Proton Acceleration with Nano-Scale Micro-Structured Target by Circularly Polarized Laser Pulse[J]. Chin. Phys. Lett., 2009, 26(12): 1764-1767
[14] MA Zhi-Wei, FENG Shu-Ling. Generation of Electric Field and Net Charge in Hall Reconnection[J]. Chin. Phys. Lett., 2008, 25(8): 1764-1767
[15] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, YANG Jian-Hua, YUAN Cheng-Wei, XU Liu-Rong, ZHAO Yan-Song. Simulation and Experimental Research of a Novel Vircator[J]. Chin. Phys. Lett., 2008, 25(7): 1764-1767
Viewed
Full text


Abstract