Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1761-1763    DOI:
Original Articles |
Large Volume and High Density Surface Wave Plasmas Sustained by Two Microwave Launchers
LIANG Yi-Zi;OU Qiong-Rong;LIANG Bo;LIANG Rong-Qing
Institute of Modern Physics, Fudan University, Shanghai 200433Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
LIANG Yi-Zi, OU Qiong-Rong, LIANG Bo et al  2008 Chin. Phys. Lett. 25 1761-1763
Download: PDF(224KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface wave plasma (SWP) is an electromagnetic excitation along the planar interface between a dielectric and plasma medium when plasma density is so large that its permittivity becomes negative. An experiment SWP system consisting of two microwave launchers (upper and side microwave launcher) has been developed for producing large volume surface wave plasmas in our
laboratory. The experimental investigation shows that comparable uniformity plasma with not only large volume but also high density properties has been obtained by the two launchers.
Keywords: 52.35.Hr      52.50.Dg     
Received: 18 September 2007      Published: 29 April 2008
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.50.Dg (Plasma sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01761
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Yi-Zi
OU Qiong-Rong
LIANG Bo
LIANG Rong-Qing
[1] Yury P B, Joshua F and Yakov Z S 2005 Phys. Rev.Lett. 95 165003
[2] Sugai H, Ghanashev I and Nagatsu M 1998 PlasmaSources Sci. Technol. 7 192
[3] Raether H 1988 Surface Plasmons (New York: Springer)
[4] Zayats A V, Smolyaninov I and Maradudin A A 2005 Phys. Rep. 408 131
[5] Moisan M, Shivarova A and Trivelpiece A W 1982 PlasmaPhys. 24 1331
[6] Zakrzewski Z and Moisan M 1995 Plasma Sources Sci.Technol. 4 379
[7] Ferreira C M and Moisan M 1993 NATO ASI B 28302
[8] Fang F, Liang R Q, Ou Q R and Sui Y F 2001 Thin SolidFilms 390 197
[9] Collin R E 1960 Field Theory of Guided Waves (NewYork: McGraw-Hill) chap 11
[10] Ghanashev I, Nagatsu M and Sugai H 1997 Jpn. J.Appl. Phys. I 36 337
[11] Gerling T R J 1998 J. Microwave Power Electromagn.Energy 23 3
[12] Liang R Q, Xu X, Ou Q R, Liang B and Wang F 2006 Jpn. J. Appl. Phys. I 45 8055
[13] Liang B, Ou Q R, Liang Y Z and Liang R Q 2007 Chin.Phys. 16 3732
[14] Xu X, Liu F, Zhou Q H, Liang B, Liang Y Z and Liang R Q2008 Appl. Phys. Lett. 92 011501
Related articles from Frontiers Journals
[1] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 1761-1763
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 1761-1763
[3] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 1761-1763
[4] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 1761-1763
[5] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 1761-1763
[6] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 1761-1763
[7] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 1761-1763
[8] NI Guo-Hua, MENG Yue-Dong, CHENG Cheng, LAN Yan. Characteristics of a Novel Water Plasma Torch[J]. Chin. Phys. Lett., 2010, 27(5): 1761-1763
[9] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 1761-1763
[10] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 1761-1763
[11] GAO Wei, SUN Bin, DING Zhen-Feng. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities[J]. Chin. Phys. Lett., 2009, 26(6): 1761-1763
[12] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 1761-1763
[13] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 1761-1763
[14] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 1761-1763
[15] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 1761-1763
Viewed
Full text


Abstract