Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1742-1745    DOI:
Original Articles |
Effects of Buoyancy on Langmuir Circulation
SONG Jun1,2;SONG Jin-Bao1
1Institute of Oceanology, Chinese Academy of Sciences, Qingdao 2660712Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
SONG Jun, SONG Jin-Bao 2008 Chin. Phys. Lett. 25 1742-1745
Download: PDF(149KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Navier--Stokes equation, an equation describing the Langmuir circulation is derived by a perturbation method when the influences of Coriolis
force and buoyancy force are both considered. The approach used in the analysis is similar to the works carried out by Craik and Leibovich [J. Fluid Mech. 73(1976)401], Leibovich [J. Fluid Mech. 79(1977)715] and Huang [J. Fluid Mech. 91(1979)191]. Potential applications of the equation proposed are discussed in the area of Antarctic circumpolar current.
Keywords: 47.32.-y      47.35.Lf     
Received: 31 January 2008      Published: 29 April 2008
PACS:  47.32.-y (Vortex dynamics; rotating fluids)  
  47.35.Lf (Wave-structure interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01742
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Jun
SONG Jin-Bao
[1] Langmuir I 1938 Science 87 119
[2] Craik A D D and Leibovich S 1976 J. Fluid Mech. 73 401
[3] Huang N E 1979 J. Fluid Mech. 91 191
[4] Leibovich S 1977 J. Fluid Mech. 82 561
[5] McWilliams J C, Sullivan P P and Moeng C H 1997 J. FluidMech. 334 1
[6] Leibovich S 1977 J. Fluid Mech. 79 715
[7] Tong B G, Yin X Y, and Zhu K Q 1994 Theory of Vortex(Beijing: Chinese University of Science and Technology PublishingCompany) (in Chinese)
[8] Phillips O M 1966 The Dynamics of the Upper Ocean(Cambridge: Cambridge University Press)
[9] Pedlosky J 1979 Geophysical Fluid Dynamics (New York: Springer)
[10] Smith J A 2001 Lecture Notes in Physics {vol 566(Berlin: Springer) p 296
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1742-1745
[2] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 1742-1745
[3] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 1742-1745
[4] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 1742-1745
[5] WEI Gang, SU Xiao-Bing, LU Dong-Qiang, YOU Yun-Xiang, DAI Shi-Qiang. Flat Solitary Waves due to a Submerged Body Moving in a Stratified Fluid[J]. Chin. Phys. Lett., 2008, 25(6): 1742-1745
[6] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 1742-1745
[7] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 1742-1745
[8] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 1742-1745
Viewed
Full text


Abstract