Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1731-1733    DOI:
Original Articles |
Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer
HAN Jian1,2;JIANG Nan 2.3
1Department of Mathematics, Tianjin University, Tianjin 3000722Department of Mechanics, Tianjin University, Tianjin 3000723Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin 300072
Cite this article:   
HAN Jian, JIANG Nan . 2008 Chin. Phys. Lett. 25 1731-1733
Download: PDF(2130KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and
fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the
frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow.
Keywords: 47.15.Cb      47.15.Fe      47.20.Ft      47.20.Ky      47.27.Cn     
Received: 09 February 2008      Published: 29 April 2008
PACS:  47.15.Cb (Laminar boundary layers)  
  47.15.Fe (Stability of laminar flows)  
  47.20.Ft (Instability of shear flows (e.g., Kelvin-Helmholtz))  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  47.27.Cn (Transition to turbulence)  
  47.27.Nz  
  47.40.Ki (Supersonic and hypersonic flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01731
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Jian
JIANG Nan .
[1] Maslov A A, Shiplyuk A N, Bountin D A and Sidorenko A A2006 J. Spacecraft Rockets 43 71
[2] Chokani N 1999 Phys. Fluids 11 3846
[3] Ferrier M and Chokani N 2003 AIAA paper 2003-0063
[4] Chokani N 2005 Exp. Fluids 38 440
[5] Gurley K, Kijewski T and Kareem A 2003 J. Eng. Mech. 2 188
[6] Chokani N 2005 Phys. Fluids 17 14102
[7] Fu S, Li Q B and Wang M H 2003 Chin. Phys. Lett. 20 2193
[8] Gao H, Fu D X, Ma Y W and Li X L 2005 Chin. Phys.Lett. 22 1709
[9] Chokani N 2001 AIAA paper 2001-0211
[10] Norris J D and Chokani N 2002 AIAA paper 2002-0154
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 1731-1733
[2] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 1731-1733
[3] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1731-1733
[4] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 1731-1733
[5] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 1731-1733
[6] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 1731-1733
[7] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 1731-1733
[8] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 1731-1733
[9] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 1731-1733
[10] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 1731-1733
[11] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 1731-1733
[12] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 1731-1733
[13] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 1731-1733
[14] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 1731-1733
[15] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 1731-1733
Viewed
Full text


Abstract