Original Articles |
|
|
|
|
Low-Threshold Conjugated Polymer Distributed Feedback Lasers on InP Substrate |
ZHANG Su-Mei1,2;ZHANG Ding-Ke1;MA Dong-Ge1 |
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 1300222State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021 |
|
Cite this article: |
ZHANG Su-Mei, ZHANG Ding-Ke, MA Dong-Ge 2008 Chin. Phys. Lett. 25 1690-1692 |
|
|
Abstract We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd:YAG pulsed laser. The devices show a laser threshold as low as 7nJ/pulse.
|
Keywords:
42.55.-f
42.70.Jk
|
|
Received: 22 August 2007
Published: 29 April 2008
|
|
|
|
|
|
[1] Hide F, Diaz-Garcia M A, Schwartz B J, Andersson M, Pei Qand Heeger A J 1996 Science 273 1833 [2] Hide F, Schwartz B J, Diaz-Garcia M A and Heeger A J 1996 Chem. Phys. Lett. 256 424 [3] Yoshida Y, Nishihara Y, Ootake R, Fuji A, Ozaki M, YoshinoK, Kim H K, Baek N S and Choi S K 2001 J. Appl. Phys. 906061 [4] Scherf U, Riechel S, Lemmer U and Mahrt R F 2001 Curr. Opin. Solid. State Mater. Sci. 5 143 [5] McGehee M D et al 1998 Appl. Phys. Lett. 721536 [6] Gaal M, Gadermaier C, Plank H, Moderegger E, Pogantsch A,Leising G and List E J W 2003 Adv. Mater. 15 1165 [7] Del Carro P et al 2006 Appl. Phys. Lett. 89201105-1 [8] Familia A M and Sarangan A 2005 Opt. Express 13 3136 [9] Heliotis G et al 2004 Adv. Funct. Mater. 14 91 [10] Andrew P, Turnbull G A, Samuel I D W and Barnes W L 2002 Appl. Phys. Lett. 81 954 [11] Turnbull G A, Andrew P, Barnes W L and Samuel I D W 2003 Phys. Rev. B 67 165107 [12] Scott B J, Wirnsberger G, McGehee M D, Chmelka B F andStucky G D 2001 Adv. Mater. 13 1231 [13] Weinberger M R, Langer G, Pogantsch A, Haase A, Zojer Eand Kern W 2004 Adv. Mater. 16 130 [14] Matsui T, Ozaki M, Yoshino K and Kajzar F 2002 Jpn.J. Appl. Phys. 41 1386 [15] Ichikawa M, Tanaka Y, Suganuma N, Koyama T andTaniguchi Y 2001 Jpn. J. Appl. Phys. I$\!$I 40 799 [16] Schneider D, Rabe T, Riedl T, Dobbertin T, Kr\"{oger M,Becker E, Johannes H H, Kwalsky W, Weimann T, Wang J, Hinze P,Gerhard A, St\"{ossel P and Vestweber H 2005 Adv. Mater. 17 31 [17] Kranzelbinder G, Toussaere E, Zyss J, Pogantsch A, List EW J, Tillmann H and H\"{orhold H H 2002 Appl. Phys. Lett. 80 716 [18] Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel DW, Andrew P and Barnes W L 2004 J. Appl. Phys. 96 6959 [19] Turnbull G A, Andrew P, Barnes W L and Samuel I D W 2003 Appl. Phys. Lett. 82 313 [20] Rogers J A, Meier M, Dodabalapur A, Laskowski E J andCappuzzo M A 1999 Appl. Phys. Lett. 74 3257 [21] Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W,Lemmer U, Feldmann J, Scherf U, M\"{ulen K, Gombert A and Wittwer V1998 Adv. Mater. 10 920 [22] Turnbull G, Andrews P, Barnes W and Samuel I 2001 Phys. Rev. B 64 125122-1 [23] Shi Y, Liu J and Yang Y 2000 Macromol. Symp. 154 187 [24] He Gufeng and Li Yongfang 2002 Appl. Phys. Lett. 80 4247 [25] Gao J, Yu G and Heeger A J 1998 Adv. Mater. 10 692 [26] Gao J, Hide F and Wang H 1997 Synth. Met. 84979 [27] Curry S M, Cubeddu R and Hansch T W 1973 Appl.Phys. 1 153 [28] Ng W, Hong C and Yariv A 1978 IEEE Trans. Electron.Devices 25 1193 [29] Kogelnik H and Shank C V 1971 Appl. Phys. Lett. 18 152 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|