Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1657-1660    DOI:
Original Articles |
Electromagnetic Invisibility of Elliptic Cylinder Cloaks
YAO Kan1,2;LI Chao1;LI Fang1
1Institute of Electronics, Chinese Academy of Sciences, Beijing 1000802Graduate University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
YAO Kan, LI Chao, LI Fang 2008 Chin. Phys. Lett. 25 1657-1660
Download: PDF(2965KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This
approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with
increasing loss.
Keywords: 41.20.Jb      42.25.Gy      42.25.Fx     
Received: 23 January 2008      Published: 29 April 2008
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01657
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Kan
LI Chao
LI Fang
[1]Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Milton G W, Briane M and Willis J R 2006 New J.Phys. 8 248
[4] Schurig D, PendryJ B and Smith D R 2006 Opt. Express 14 9794
[5] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B,Starr A F and Smith D R 2006 Science 314 977
[6] Cai W, Chettiar U K, Kildishev A V, Shalaev V M and MiltonG W 2007 Appl. Phys. Lett. 91 111105
[7] Zolla F, Guenneau S, Nicolet A and Pendry J B 2007 Opt. Lett. 32 1069
[8] Ruan Z, Yan M, Neff C W and Qiu M 2007 Phys. Rev.Lett. 99 113903
[9] Huang Y, Feng Y and Jiang T 2007 Opt. Express 15 11133
[10] Cummer S A and Schurig D 2007 New J. Phys. 945
[11] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R andPendry J B 2008 Photonics Nanostruct. Fundam. Appl. (in press)
[12] Chen H and Chan C T 2007 Appl. Phys. Lett. 90 241105
[13] Kwon D H and Werner D H 2008 Appl. Phys. Lett. 92 013505
[14] Ma H, Qu S, Xu Z, Zhang J, Chen B and Wang J 2008 Phys. Rev. A 77 013825
[15] Ward A J and Pendry J B 1996 J. Mod. Opt. 43773
[16] Post E J 1962 Formal Structure of Electromagnetics(New York: Wiley)
[17] Cummer S A, Popa B-I, Schurig D, Smith D R and Pendry J2006 Phys. Rev. E 74 036621
[18] Greegor R B, Parazzoli C G, Li K and Tanielian M H 2003 Appl. Phys. Lett. 82 2356
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 1657-1660
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 1657-1660
[3] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 1657-1660
[4] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 1657-1660
[5] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 1657-1660
[6] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 1657-1660
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 1657-1660
[8] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 1657-1660
[9] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 1657-1660
[10] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 1657-1660
[11] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 1657-1660
[12] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 1657-1660
[13] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 1657-1660
[14] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 1657-1660
[15] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 1657-1660
Viewed
Full text


Abstract