Original Articles |
|
|
|
|
Symmetry Energy and Isovector Giant Dipole Resonance in Finite Nuclei |
CAO Li-Gang1,3;MA Zhong-Yu 2,3 |
1Institute of Modern Physics, Chinese Academy of Science, Lanzhou 7300002China Institute of Atomic Energy, Beijing 1024133 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 |
|
Cite this article: |
CAO Li-Gang, MA Zhong-Yu 2008 Chin. Phys. Lett. 25 1625-1628 |
|
|
Abstract We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV ≤ S(ρ0)≤37.0,MeV. The comparison to the present experimental data in the soft dipole mode of 132Sn constrains approximately the symmetry energy at ρ= 0.1fm-3 at the interval 21.2MeV~22.5MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
|
Keywords:
21.60.Jz
21.65.Ef
24.30.Cz
24.30.Cd
|
|
Received: 15 January 2008
Published: 29 April 2008
|
|
PACS: |
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
21.65.Ef
|
(Symmetry energy)
|
|
24.30.Cz
|
(Giant resonances)
|
|
24.30.Cd
|
|
|
|
|
|
[1] Steiner A W et al 2005 Phys. Rep. 411 325 [2] Zuo W et al 1999 Phys. Rev. C 60 024605 [3] Ma Z Y and Liu L 2002 Phys. Rev. C66 024321 [4] Li B A et al 2004 Nucl. Phys. A 735 563 [5] Baran V et al 2005 Phys. Rep. 410 335 [6] Gaitanos T et al 2004 Nucl. Phys. A 732 24 [7] Shetty D V et al 2004 Phys. Rev. C 70 011601 [8] Akira Ono et al 2004 Phys. Rev. C 70 041604 [9] Li Q F et al 2005 Phys. Rev. C 72 034613 [10] Horowitz C J, et al 2001 Phys. Rev. C 63025501 [11] Suzuki T et al 1995 Phys. Rev. Lett. 75 3241 [12] Krasznahorkay A et al 1999 Phys. Rev. Lett. 82 3216 [13] Brown B A 2000 Phys. Rev. Lett. 85 5296 [14] Typel S and Brown B A 2001 Phys. Rev. C 64027302 [15] Furnstahl B A 2002 Nucl. Phys. A 706 85 [16] Yoshida S and Sagawa H 2004 Phys. Rev. C 69024318 [17] Baldo B et al 2004 Nucl. Phys. A 736 241 [18] Goldhaber M et al 1947 Phys. Rev. 74 1046 [19] Reinhard P G 1999 Nucl. Phys. A 649 305c [20] Vretenar D et al 2003 Phys. Rev. C 68 024310 [21] Piekarewicz J 2004 Phys. Rev. C 69 041301 [22] Ring P 1996 Prog. Part. Nucl. Phys. 37 197 [23] Ma Z Y et al 2001 Nucl. Phys. A 686 173 Ma Z Y et al 2002 Nucl. Phys. A 703 222 [24] Cao L G and Ma Z Y 2002 Phys. Rev. C 66024311 [25] Ring P et al 2001 Nucl. Phys. A 694 249 [26] Vretenar D et al 2000 Phys. Lett. B 487 334 [27] Piekarewicz J 2001 Phys. Rev. C 64 024307 [28] Sharma M M et al 1993 Phys. Lett. B 312 377 [29] Lalazissis G A 1997 Phys. Rev. C 55 540 [30] Gmuca S 2000 Proc. 2nd Int. Conf. Fission andProperties of Neutron-Rich Nuclei ed Hamilton J H, Phillips W R andCarter H K) (St. Andrews, Scotland, 28 June--3 July 1999)(Singapore: World Scientific) [31] Rufa M et al 1988 Phys. Rev. C 38 390 [32] Bender M et al 1999 Phys. Rev. C 60 034304 [33] Carlos P et al 1974 Nucl. Phys. A 225 171 [34] Berman B L et al 1975 Rev. Mod. Phys. 47 713 [35] Ritman J et al 1993 Phys. Rev. Lett. 70 533 [36] Adrich P et al 2005 Phys. Rev. Lett. 95132501 [37] Todd B G and Piekarewicz J 2003 Phys. Rev. C 67 044317 [38] Yennello S J et al arXiv:nucl-ex/0601006 [39] Khoa D T and Than H S 2005 Phys. Rev. C 71044601 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|